
A Vision for 223P, Brick, and Project Haystack
Gabe Fierro
January 5, 2022

It is important to remember that interoperability is not a goal,
but it means. Our goal is to facilitate the deployment of energy effi-
cient applications turning buildings into grid interactive assets 1. This 1 Harry Bergmann, Cory Mosiman,

Avijit Saha, Selam Haile, William
Livingood, Steve Bushby, Gabe Fierro,
Joel Bender, Michael Poplawski, Jes-
sica Granderson, et al. Semantic
interoperability to enable smart, grid-
interactive efficient buildings. Technical
report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United
States), 2020

requires the nimble application of data to such tasks, across a diverse
spectrum of heterogeneous environments. Structured metadata is an
enabling technology which reduces the inherent complexity of inter-
facing with such diverse resources, making it possible for individuals
or small teams to scale their effort across hundreds, thousands for
even millions of buildings.

The set of metadata models proposed to address this task has
steadily grown over the past decade. The design, implementation,
and modes of intended use for each of these models depend on the
perspectives and experiences and concerns of their intended users
and originating communities. At the same time, the conversation
around building metadata consistently and misleadingly pits these
models against each other as if they are direct competitors. This ul-
timately presents a confusing story to the intended adopters and
consumers of building metadata: which model to choose or invest
in? The question I aim to address in this document is: how can we
simplify the story around standardized building metadata while (a)
preserving existing investments in metadata and software, and (b) re-
ducing or eliminating redundant effort between fragmented metadata
development communities?

Figure 1: Is one path forward to enable
translation between all competing
models?

The diversity of data driven tasks for buildings suggests that
there is no universal metadata schema or data model that solves all
problems. This is well documented, albeit indirectly, in the litera-
ture. It has also been proved through the mirror existence of multiple
metadata standards: if existing data models solve all the problems,
then there would not be as much of a need to develop and explore
additional models. Indeed, we can look at metadata models for
buildings and building data as addressing particular shortcomings
in their predecessors and contemporaries:

• IFC 2 addresses the lack of standard exchange for digital geometry 2 Industry Foundation Classes (IFC).
https://www.buildingsmart.

org/standards/bsi-standards/

industry-foundation-classes/

• Haystack 3 addresses the lack of structure in BMS point labels

3 Project Haystack. https:

//project-haystack.org

• Brick 4 addresses the lack of standardized semantic information in

4 Brick Schema. https://brickschema.
org

Haystack

• RealEstateCore 5 addresses the lack of property management
5 RealEstateCore. https://

realestatecore.io

https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://project-haystack.org
https://project-haystack.org
https://brickschema.org
https://brickschema.org
https://realestatecore.io
https://realestatecore.io


a vision for 223p, brick, and project haystack 2

metadata in other ontologies

• 223P addresses the lack of machine readable and verifiable de-
scriptions of the topology of building subsystems.

• BTO 6 makes it possible to refer to generic IFC spatial concepts 6 Building Topology Ontology (BOT).
https://w3c-lbd-cg.github.io/bot/inside the RDF framework

Given these natural divisions and the distributed nature of the
individuals, teams, and communities working on metadata for build-
ings, I think it makes the most sense to focus on how these models
can relate and connect to one another. This is explicitly against defin-
ing a unification scheme by which the metadata in any one data
model can be fully expressed in any other data model (Figure 2).

Figure 2: Full interoperability between
all available building metadata stan-
dards is unrealistic and unnecessary

Instead, let us focus on where existing metadata models shine and
build the glue that ensures that other complementary data models
can make use of that metadata when needed, and where appropriate.
This will require reducing the scope of some metadata models 7 and

7 (or at least encouraging those commu-
nities to do so)

migrating concepts from some models to others.
The intent is to define and produce a cohesive "metadata stack"

in which the boundaries between metadata models are clearly and
rigorously defined. This will disambiguate which metadata models
should be used for which tasks, and how the metadata models may
be used together.

Separation of Concerns

We must be principled in assigning responsibility to each of the par-
ticipating metadata models in order to eliminate (or at least reduce)
unnecessary redundancy and to clarify the role of each model. To
this end, I propose the following “facets” to organize the participat-
ing metadata models:

• Data: What data sources and sinks exist, how to access them, their
properties and immediate context. “Application-facing”.

• Control: How data is processed or leveraged to produce control
decisions

• Network Representation: How devices, objects, data are repre-
sented and accessed on the network

• Topology and Composition: How assets are connected and placed
within the building, how the building is composed

Each metadata model should bound its scope to one of these facets,
save for the concepts that are necessarily shared between models in
order to permit interoperability between them.

https://w3c-lbd-cg.github.io/bot/


a vision for 223p, brick, and project haystack 3

Modeling Control

There is a tremendous amount of diversity in how control sequences
are expressed, represented and executed in buildings. Standardizing
a language for control is far from a trivial task, and metadata models
seeking to describe any aspect of this domain should be very careful.
Luckily, there is already a candidate standard in this space.

The Control Description Language 8 is 8 Control Description Language (CDL).
https://obc.lbl.gov/specification/

cdl.html, aa declarative language that can be used to express control sequences
using block-diagrams. It is designed in such a way that it can be
used to conveniently specify building control sequences in a vendor-
independent format, use them within whole building energy simula-
tion, and translate them for use in building control systems.

There are nascent implementations of standard sequences of oper-
ations in CDL available today 9. While integration between CDL and 9 ASHRAE G36 Sequences of Operation

in CDL. https://simulationresearch.
lbl.gov/modelica/releases/v5.0.0/

help/Buildings_Controls_OBC_ASHRAE_

G36_PR1.html, b

other metadata models is still under-explored, it should be an even-
tual priority to develop a way of referencing between other metadata
models and CDL-based specifications of control.

Figure 3: Controller for a cooling-coil
valve, not temperature control, but you
get the idea

For example, consider a simple PID loop for temperature control
(Figure 3). From CDL’s perspective, the inputs (the current tempera-
ture readings from one or more sensors), outputs (heating coil valve
positions, damper positions) and parameters/targets (temperature
setpoints and/or deadbands) are all specified directly. Bereft of any
context beyond an unstructured label, it is up to the developer or
commissioner of the control sequence to ensure that the proper I/O
points are linked to the CDL process. No where in CDL is there any
conceptualization of “where” (in a logical or physical sense) those
I/O points are and how they relate to the rest of the building.

Rather than shoehorning these descriptions into CDL, why not
instead link CDL’s representation of those I/O points to a richer,
semantic representation in another metadata model?

Modeling Data

A metadata model for building data should facilitate the discov-
ery and access of data to enable data-driven software. Data-driven
software wants to leverage data sources in buildings — sensors, set-
points, statuses, alarms, etc. — to enact change or achieve insight into
the operation, health and performance of the building.

An effective design of a metadata model for building data should
prioritize the abstraction presented to the developer. In essence: sim-
ple data tasks should be straightforward, and unique or complicated
data tasks should be possible. This will likely require abstracting
away much of the complexity inherent to the building.

https://obc.lbl.gov/specification/cdl.html
https://obc.lbl.gov/specification/cdl.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html


a vision for 223p, brick, and project haystack 4

Such abstractions are already present in both literature and prac-
tice in the form of context-dependent but generally understood
point labels. ASHRAE’s Guideline 36 standard contains lists of re-
quired points for families of control sequences and FDD rules. The
point names, such as “VAV Box Damper Position” and “Occupancy
Sensor”, are never formally or explicitly defined anywhere in the
standard, yet they can be understood by a controls engineer within
a specific context — the building they happen to be working on.
Over time, point naming conventions and fixed name lists helped
to standardize the technical understanding of a particular concept
(Figure 4); however, the lack of standardization and structured infor-
mation among such conventions prevented interoperability.

Figure 4: A sample point naming
convention for a real building

Metadata efforts Brick and Haystack were both born out of a need
to standardize and structure the semantic information informally
encoded in BMS point labels. Where they differ is in how they ap-
proached the abstraction presented to the developer: Haystack chose
to emphasize an intuitive, easy-to-use interface with a great deal of
flexibility; Brick chose to emphasize standardizing the semantics of
data sources and their context. These two abstractions are not mu-
tually exclusive; they can, and should, be combined by taking the
strengths of each to complement the weakness of the other.

I am eliding a discussion of the respec-
tive designs of Brick and Haystack and
their respective strengths and weak-
nesses. I refer the reader to Fierro et al.
[2019] and Fierro [2021] for a detailed
discussion.

Figure 5 illustrates one possible vision. Using techniques estab-
lished in Fierro et al. [2019], we can establish a mapping between
Brick concepts and sets of Haystack tags and use that mapping to
serve Haystack tags directly off of a Brick model. This has three benefits:

Figure 5: Use of a “tag library” exposes
tags to a Haystack API implementation
while directly from a Brick RDF graph.

• Brick’s concept definitions and formal semantics enable consis-
tency in Haystack modeling. Community conventions such as the
Utah tagging document and more recent standardization efforts
(Haystack 4 protos) can be formalized using Brick and incorpo-
rated into linters or other verifying software.

• Existing Haystack software – backend, frontend and applications
– can work on top of Brick models with little-to-no modification.
Existing Haystack models can even be “retconned” into a Brick
model to ensure correctness and consistency.



a vision for 223p, brick, and project haystack 5

• Because they are both built on RDF and SHACL, it will be eas-
ier to translate 223P to Brick than it will be to translate 223P to
Haystack. Serving Haystack over a Brick model allows Haystack to
be indirectly interoperable with 223P

I have already begun prototyping this idea using mapping tables
like Table reftab:mapping-example which get compiled into SHACL
rules which can be evaluated by any open-source or commercial
SHACL engine which supports SHACL-AF.

Brick Concept Haystack Tags
brick:Air_Temperature_Sensor {air, temp, sensor, point}

brick:VAV {vav, equip}

Table 1: Tabular mapping between Brick
classes and Haystack tag sets

Key to this approach is treating Brick classes as the canonical defi-
nition of these concepts. The Brick concept organization will need to be
patched with concepts and protos from Haystack and likely sustain
some light reorganization to account for organizational differences.

One example is that Haystack defines
an FCU as a subclass of AHU; Brick de-
fines an FCU as a subclass of Terminal
Unit — not an AHU.

Figure 6: Illustrating representing the
same metadata across the Ontology
Alignment Project tags, Haystack 4 pro-
tos, Utah tag sets, and Brick’s existing
tags. This is all handled automatically.

Figure 6 illustrates how the SHACL-based tag shim I have devel-
oped allows Haystack metadata to be translated between different tag
interpretations using Brick as the intermediary.

Modeling Topology and Composition

Even though Brick and Haystack both define many of the concepts
named in point lists and application specifications, they lack the
detailed and high-fidelity descriptions of buildings and building
subsystems that are required for certain advanced use cases. Much
of this detail is available through AEC models such as IFC and Revit
but these are (a) vary widely in quality and consistency, despite the
existence of IFC MVD and other specification languages10, and (b) 10 I once worked with an IFC model

where all of the lighting fixtures were
modeled as toilets.

are awkward to create, extend and interact with.
ASHRAE’s proposed 223P model is well-suited to addressing these

issues. It has explicit conceptualizations of the connections and con-
nection points between devices, allowing software to reason about



a vision for 223p, brick, and project haystack 6

the complex topology within and between devices in buildings. Like
Brick, its modeling of properties and other data in the building is
based on QUDT 11. 223P’s level of detail makes it uniquely posi- 11 Quantity, Unit, Dimension and Type

Ontology. http://www.qudt.org/tioned to model complex building subsystems that are not cleanly or
completely handled in Brick or Haystack: lead/lag configurations,
split ducts, the position of sensors or other equipment within com-
plex pipework, and so on.

223P is a necessarily complex model; buildings are complicated, and
223P can model most if not all of that complexity. Brick and Haystack
are abstractions of that model — they remove detail in favor of sim- Abstraction is the simplifying removal

of nonessential information.plifying the model that the model consumer must understand and
query. Brick and Haystack will not be able to support all of the ap-
plications that 223P is able to, but they will make it easier to author
common applications that do not require all of the detail supplied by
223P

Figure 7: An ontology “stack” showing
how Haystack, Brick and 223P can
present different abstractions over the
same building.

Figure 7 illustrates a hypothetical “stack” for how software could
choose to interact with the same building through either Haystack,
Brick or 223P depending on how much detail and fidelity is required.
Just as Haystack tags are derivable from Brick models, Brick mod-

http://www.qudt.org/


a vision for 223p, brick, and project haystack 7

els could be derived from 223P models. A Brick model does not
capture all of the detail in a 223P model, but it can provide a simpli-
fied interface — including intuitive contextualized point names like
Exhaust_Air_Temperature_Sensor — that facilitates the development
of data-driven software.

Modeling Network Representation

The final facet of the building is the network/instrumentation view.
This is the structured representation of the control/monitoring net-
work used to interact with the building: BACnet, LonTalk, OPC,
Modbus, MQTT, etc. There is ongoing work on introducing an RDF-
based model of BACnet networks12, and this work could be extended 12 This is being utilized in Brick already:

https://docs.brickschema.org/

metadata/external-representations.

html

to other protocols.
Modeling the network makes it possible for other digital represen-

tations of the building to refer to the metadata required to access a
device, object, point, or data source.

Other Ontologies

I have left out of the above discussion the other building ontolo-
gies in the space: REC, BOT and others. For other domain-oriented
ontologies (like REC), there are ongoing conversations for how to
allocate definition of the necessary concepts among the existing com-
munities. Brick and RealEstateCore are currently discussing how
Brick could provide all of the equipment definitions and REC could
provide all of the location definitions; this would eliminate the cur-
rent duplicate modeling efforts between the two communities.

Upper ontologies like BOT13 can be easily incorporated into do- 13 Not really an upper ontology, but
more generic than a domain ontologymain ontologies. Interoperability is relatively easy to achieve here

due to how generic the upper ontologies are, and is not a major con-
cern.

Conclusion

This document presents a possible vision for combining 223P, Brick
and Project Haystack into a cohesive stack for supporting building
applications. The stack emphasizes interoperability through clean
interfaces between participating metadata models. By defining au-
tomated derivations between the metadata models, it is possible for
software to choose the appropriate abstraction for its intended task.

https://docs.brickschema.org/metadata/external-representations.html
https://docs.brickschema.org/metadata/external-representations.html
https://docs.brickschema.org/metadata/external-representations.html


a vision for 223p, brick, and project haystack 8

References

Building Topology Ontology (BOT). https://w3c-lbd-cg.github.

io/bot/.

Brick Schema. https://brickschema.org.

Control Description Language (CDL). https://obc.lbl.gov/

specification/cdl.html, a.

ASHRAE G36 Sequences of Operation in CDL. https://

simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/

Buildings_Controls_OBC_ASHRAE_G36_PR1.html, b.

Project Haystack. https://project-haystack.org.

Industry Foundation Classes (IFC). https://www.buildingsmart.

org/standards/bsi-standards/industry-foundation-classes/.

Quantity, Unit, Dimension and Type Ontology. http://www.qudt.

org/.

RealEstateCore. https://realestatecore.io.

Harry Bergmann, Cory Mosiman, Avijit Saha, Selam Haile, William
Livingood, Steve Bushby, Gabe Fierro, Joel Bender, Michael
Poplawski, Jessica Granderson, et al. Semantic interoperability
to enable smart, grid-interactive efficient buildings. Technical re-
port, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States), 2020.

Gabe Fierro, Jason Koh, Yuvraj Agarwal, Rajesh K Gupta, and
David E Culler. Beyond a house of sticks: Formalizing metadata
tags with brick. In Proceedings of the 6th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transportation,
pages 125–134, 2019.

Gabriel Tomas Fierro. Self-Adapting Software for Cyberphysical Sys-
tems. PhD thesis, University of California, Berkeley, 2021.

https://w3c-lbd-cg.github.io/bot/
https://w3c-lbd-cg.github.io/bot/
https://brickschema.org
https://obc.lbl.gov/specification/cdl.html
https://obc.lbl.gov/specification/cdl.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html
https://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1.html
https://project-haystack.org
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
http://www.qudt.org/
http://www.qudt.org/
https://realestatecore.io

	Separation of Concerns
	Modeling Control
	Modeling Data
	Modeling Topology and Composition
	Modeling Network Representation
	Other Ontologies
	Conclusion

