
Data-driven Applications Require Extensive
Configuration

Configuration of applications requires

discovery of data sources

• Lack of standard representations of

buildings during their operation

– e.g., ad-hoc naming conventions for

BAS/BMS points

• Existing representations not fit-for-

purpose

– e.g., BIM for geometry, not control

loops

Result: manual site-specific configuration

required

Standard Semantic Metadata Simplifies
Configuration Effort

• Standard semantic metadata provides

human- and machine- readable

representation of:

– Building data points

– Building equipment

– Building subsystems

– Etc

• Significantly reduces site-specific

configuration effort

• Enables automated reasoning and

configuration

Ontology: formal definitions of
concepts, relationships

Model: the graph representing a
particular building

3

4

Brick Updates

Brick 1.4 Release Candidate

• Will be out for public review under a new tag today/tomorrow
• Watch for post on Google Group

• Will contain
• List of changes

• Downloadable files of the release

• Example models

New Concepts!

• New sensors, setpoints, commands

• Information/communication technology (ICT) concepts
o Thanks, RealEstateCore!

o Including sensor equipment for physical placement

• Storage tanks

• More PV stuff

• VRF, Heat Pumps and Chillers

• New terminal units, dampers, pumps

• Switchgears, switches, breakers

Consistency Fixes

• Using QUDT types/concepts where possible
o Interim: a few Brick-only "quantity kinds", e.g. for HVAC
oGreater consistency with future ASHRAE 223P standard

• Improved use of SHACL for validation/inference
o Enable future integration with ASHRAE 223P
o Enable future integration with Project Haystack "Xeto" type system

• hasSubstance/hasQuantity annotations for Sensor, Setpoint,
Command

• Rearrangement of setpoints, sensors, and some other class trees
o Thanks Mapped!
oMuch more consistent

• And others! Please see the release notes

New Modeling Concepts

• Aliases: allow for "preferred" classes
o e.g., Variable Air Volume Box over VAV

• Improved handling of deprecated classes, concepts

• Easier Brick extensions
oMore on this next

• Alignment with RealEstateCore

• Groundwork for future alignment with ASHRAE 223P

Easier Extensions for Brick
• Can now define your

extensions in the same
Python data structures
as the core Brick
distribution

• Ontology metadata

• Classes, entity
properties,
relationships,
constraints, etc

Steps Towards Semantic Interoperability

• Brick and RealEstateCore

• Brick and Project Haystack

• Brick and ASHRAE 223P

• Supporting tools (BuildingMOTIF)

Brick and RealEstateCore

• Implemented in SHACL (brickpatches.ttl) in Brick repo

• Rules do the hard work for you; automated backwards compatibility

lastKnownValue relationship Add REC Observation Types automatically

Brick and RealEstateCore

• Implemented in SHACL (brickpatches.ttl) in Brick repo

• Rules do the hard work for you; automated backwards compatibility

Replace location types automatically Infer REC properties/relationships when needed

Brick + REC Model

Brick-only model (v1.3 compliant)

Run script on model

Brick + REC Model

Brick+REC model (classes and relationships)

Run script on model

Brick-only model

Brick and Project Haystack
• Building on new “Xeto” PH type system
• Haystack → RDF:

• Produce Brick/REC and 223P descriptions of
Haystack entities

• Validate Haystack models against 223P standard

• RDF → Haystack:
• Use Xeto type system to add Haystack tags to

Brick/REC, 223P entities
• Produce valid Haystack models from valid

Brick/REC, 223P models
• Along the way:

• Resolve differences between Brick/Haystack
types

Brick.ttl
Brick ontology

Brick/

Haystack

Mapping

File

Xeto type library

Resolved Xeto

JSON

Xeto-as-

SHACL.ttl

Expansion

Templates

brick-to-haystack

haystack-to-brick

Haystack

Model

Brick

Model

223P

Model

Haystack

Defs /

Xeto

Xeto type

library

U
s
e
r
-
f
a
c
i
n
g

E
x
e
c
u
t
a
b
l
e

T
y
p
e

M
a
p
p
i
n
g

a
n
d

T
r
a
n
s
l
a
t
i
o
n

Ongoing DOE Semantic

Interoperability Project

SHACL/Xeto translation

and

Brick/Haystack type mapping

Brick/RE
C
Model

Brick and 223P (and REC and Haystack)

• 223P models the fundamental
components of a building

• Brick/REC provide human-facing
application-centric vocabulary
• Programmatically generated from 223P

• Haystack provides one possible high-
level abstraction over RDF / graph
models
• Programmatically generated from

Brick/REC

NREL | 19

VAV w/ Reheat: 223P

• Directionality, substance, properties propagated through process flows

• Equipment composition, explicit sensor observation relationships

• Some details removed for ease of visualization

NREL | 20

VAV w/ Reheat: 223P → Brick/REC

• Brick/REC model captures composition, flow, relationship to BMS points

– Simplification of the 223P model with more specific names

• Brick/REC model is programmatically generated from the 223P model

– Uses SHACL to infer types, add necessary relationships

NREL | 21

VAV w/ Reheat: 223P → Brick/REC → Haystack

• Application of SHACL rules adds Haystack tags to Brick/REC entities

– Rules constructed automatically from Xeto type definitions

– Adds ref tags and (soon!) value tags

• Haystack import formats (e.g. JSON) generated from the augmented RDF model

Shapes: Formalizing Application Metadata Requirements

• Come in many different
forms…

• At right: point lists from
ASHRAE Guideline 36

• SOO for high-perf forced-air
systems

• How to ensure Brick model
contains the right metadata?

• Shape: set of constraints, requirements, conditions on parts of the graph

• Function returns T/F when evaluated on a graph
• Plus some information about ”what went wrong”

• Defined using W3C SHACL standard

Shapes: Formalizing Application Metadata Requirements

• Template: function that generates a graph

• Simplifies RDF graph creation
• Tabular input: web forms! Spreadsheets!

• Easier to integrate (pull from BACnet, etc)

Templates: Simplifying Model Creation

BuildingMOTIF SDK
• Incorporate formal use case

requirements into iterative workflow

• Ensure that delivered metadata
model fulfills all use cases

• Automate / simplify authoring
through templates, imports from
other sources

• Code open-sourced on GitHub

• Publication on underlying theory /
algorithms in BuildSys 2022

• Currently supports Brick, REC and 223P

	Slide 1: Data-driven Applications Require Extensive Configuration
	Slide 2: Standard Semantic Metadata Simplifies Configuration Effort
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Brick Updates
	Slide 7: Brick 1.4 Release Candidate
	Slide 8: New Concepts!
	Slide 9: Consistency Fixes
	Slide 10: New Modeling Concepts
	Slide 11: Easier Extensions for Brick
	Slide 12: Steps Towards Semantic Interoperability
	Slide 13: Brick and RealEstateCore
	Slide 14: Brick and RealEstateCore
	Slide 15: Brick + REC Model
	Slide 16: Brick + REC Model
	Slide 17: Brick and Project Haystack
	Slide 18: Brick and 223P (and REC and Haystack)
	Slide 19: VAV w/ Reheat: 223P
	Slide 20: VAV w/ Reheat: 223P  Brick/REC
	Slide 21: VAV w/ Reheat: 223P  Brick/REC  Haystack
	Slide 22: Shapes: Formalizing Application Metadata Requirements
	Slide 23: Shapes: Formalizing Application Metadata Requirements
	Slide 24: Templates: Simplifying Model Creation
	Slide 25: BuildingMOTIF SDK

