Towards Programmable Smart Buildings

Dr. Gabe Fierro

Assistant Professor, Computer Science Department, Colorado School of Mines

Introduction

- Working in smart buildings/IoT/CPS space for ~10 years
- Computer Science PhD, UC Berkeley, 2021
 - Thesis: Self-Adapting Software for Cyber-Physical Systems
- Active ASHRAE member:
 - Regular tutorials at ASHRAE conferences
 - Member of Semantic Interoperability Working Group
 - Core author of new ASHRAE 223P proposed standard

- Co-founder and current tech lead of Brick Schema ontology effort
- Asst Prof in CS Dept at CO School of Mines
- Researcher in Commercial Buildings Research Group at NREL

Brief Outline

- Setting the stage: current issues in buildings
- New standards and opportunities
- Unified vision of Programmable Smart Buildings
- Current applications and use cases
- Visions of future Programmable Smart Buildings

• Most of my experience is in the commercial building space, but many of these problems generalize

Setting the Stage

- Modern buildings have numerous subsystems, increasingly digitized
 - Many potential data sources, control points
- No end of emerging digital solutions across the building lifecycle
 - Design, construction, Cx, ops, auditing, maintenance, etc...
- CBECS survey (2018): superlinear adoption rate of digital technologies, but sublinear adoption rate of digital applications

Interoperability Woes

Mechanical Diagrams: human-readable but non-standard

Facility managers, maintenance staff, and others hold implicit knowledge

BMS labels and graphics: undocumented naming conventions

Lack of needed digital (and interoperable) digital retrofits

- Emerging data-driven applications like FDD, CX, AI/ML optimization need access to building design, data, control information
- If captured at all, this information is usually locked away behind silos (digital and administrative), may not be digitized, often incomplete/incorrect

Ending Bespoke Development?

Naming conventions and protocol "soup"

 Lack of standardization, interoperability increases soft costs associated with <u>developing</u> and <u>deploying</u> data-driven solutions

Opportunities for Digitization of Buildings

• Software providers:

• Reduce deployment (installation, configuration, etc) time and cost

• Property owners:

- Enable easier procurement of intelligent controls, FDD, and more
- Reduce vendor lock-in
- Allows verification of software conformance

Society:

 Facilitate scalable deployment of analytics and controls to support the energy efficiency and decarbonization goals

Standardizing Semantic Metadata

- Standardizing digital representations of building can <u>lower</u> soft costs by removing site-specific configuration and development
- Active conversation in industry: what are these digital representations and how should they be used?

Semantic Metadata for Buildings

- Digital representation which can be accessed by applications
- Semantic metadata retains information that allows applications to understand building composition/data sources consistently
- Growing ecosystem of solutions
 - Early solutions (Haystack) are a good start
 - Validation and consistency remain challenges
- Not all solutions are interoperable (yet)
- Variance between models built with same solution!

- Air flow

Brick: "Data Twin" for Buildings

Comprehensive, Extensible Taxonomy

- Relate Brick Point instances to timeseries data
- Contextualize data in existing datastores

Building on Open Standards for Semantic Metadata Graphs

Mechanical Diagrams: human-readable and non-standard

RDF Graphs: standard machine/human-readable models

- Build on Resource Description Framework (RDF)
 W3C standard for directed, labeled graphs
 - Tap into existing open-source and commercial ecosystems of tools
 - Supports sophisticated search and discovery
- **SPARQL**: Standard graph query language
 - Retrieve information from graphs
- **SHACL**: Constraint language for graphs
 - Enable automated validation of models
 - Acts as a "schema" for graphs

New Standards: ASHRAE 223P and 231P

- ASHRAE 223P: Designation and Classification of Semantic Tags for Building Data
 - Graph-based representation of buildings
 - More detail than Brick, Haystack, etc.
 - Models connections, devices, systems, sensors, ...
 - Servers

 Lighting
 Occupancy

 Lighting
 Occupancy

 Air Handling Unit

 Communications Technology
 (ICT) Systems

 AHUS

 Building Automation &
 Control System

 Meter

 Chillers

 PHEVS

 SubMeter

 Storage

 Electric Vehicle

- ASHRAE 231P: A Control Description Language for Building Environmental Control Sequences
 - Vendor-agnostic control sequences
 - Validate in simulation and easily deploy on the real thing

New Standards: ASHRAE 223P and 231P

Single data structure relating (1) structure/topology of all building subsystems, (2) the networking infrastructure to communicate with data sources, (3) the actual digital logic running the building

Semantic Metadata Enables Programmability

Layering Metadata Solutions in Semantic "Stack"

- "Best" model is relative to the applications' needs
- Go "up" the stack
 - More abstracted
 - Easier queries, but less precision
- Go "down" the stack
 - More detail, more formal
 - Queries can be more precise, but may be harder to write
- Active research to automatically derive Haystack, Brick from 223P

Future Opportunities

Connecting Semantic Metadata with Simulations

- Challenge: control testbed does not facilitate deployment of these algorithms in actual buildings
- **Solution**: layer virtual building network over the I/O points of simulation
- Use Brick (semantic metadata) to provide context over the simulation
- End result is an implementationagnostic representation of building with realistic behavior

SeeQ: New Programming Model for Building Analytics

- Write Python applications against concepts defined by metadata ontology
- SeeQ "compiles" the Python code against the metadata model for each building
 - Generates building-specific impl.
- Demonstrated on FDD rules
- Step towards fully portable applications

```
1 from See0 import *
2 from pandas import DataFrame
 3 from G36.CQs import Dmp_Pos, Fsa, Fsp_clg, Fan_s
4 from APAR.CQs import Tsa, Tma, DelTsf, Hc_pos, Epsilon_t
6 def APAR_R1(sup: Tsa, mix: Tma, drop: DelTsf, heat_coil: Hc_pos, e: Epsilon_t):
        is_heating: DataFrame = heating_coil.df > 0
       supply_air_low: DataFrame = sup.df < (mix.df + drop.df - error.df)</pre>
       violating_records = is_heating & supply_air_low
       # returns fault if more than 10 violiating samples
10
       if len(violating_records) > 10:
11
            return "fault detected"
12
13
14 def G36_Dmp_Leaking(pos: Dmp_Pos, sup_flow: Fsa, cool_sp: Fsp_clg, fan: Fan_s):
        if ((pos.df == 0) \text{ and } (sup\_flow.df > max([0.1*cool\_sp.df, 50]) \setminus
       and (fan.df == "ON")).for_time(600):
16
            return "Level 4 alarm'
17
```


BuildingMOTIF: SDK to Support Semantic Metadata

- US Dept of Energy Building Technologies Office project, NREL led
- Use semantic metadata as "lingua franca" connecting existing tools for simulation, modeling, controls, AFDD, BIM, M&V, data science

BuildingMOTIF: Create and Validate Metadata

- Incorporate formal use case requirements into iterative workflow
- Ensure that delivered metadata model fulfills all use cases
- Automate / simplify authoring of models through templates, imports from other sources
- Current work: provide economic transparency on ROI for smart analytics

Future of Programmable Buildings

- Semantic metadata models are a powerful abstraction underneath more familiar developer-facing abstractions
 - Automated checking and validation of programs, models
 - Site-specific code generation for "portable applications"
 - Support data warehousing for downstream analytics; use queries to create necessary datasets as needed ("materialized views")
 - Can replace existing ad-hoc "device trees" for buildings
- Still lots of work to do!
 - Syntactic interop (RPC?): is Matter/Zigbee sufficient?
 - Better and higher-level programming models
 - Operating system / application platform / software development kits
 - Opportunities to leverage LLMs and emerging Al

Thank you!

- My current research/projects: https://gtf.fyi
 - Contains links to all the works I've mentioned in this talk
 - Most have an open-source GitHub repository associated with them
- Brick ontology project: https://brickschema.org
- ASHRAE 223P development: https://open223.info
- NREL-developed semantic metadata platform: <u>https://github.com/NREL/BuildingMOTIF</u>