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Abstract

We introduce a new database and tools that will ingest and automatically build
an updated database using United States patent data. The tools disambiguate in-
ventor, assignee, law firm, and location names mentioned on each granted US patent
from 1975 to 2014 inclusive all applications 2001 to 2014. While parts of this first
version are crude, all the approaches are fully automated and provide the founda-
tion for much greater improvement. We describe a simple user interface, list descrip-
tive statistics, illustrate an automated co-authorship network mapping tool, provide
a lexical distance measure between all classes since 1975, and discuss future oppor-
tunities such as matching the disambiguated patent data with other frequently used
datasets such as Compustat. The documentation and disambiguations can be found
at http://www.funginstitute.berkeley.edu.
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Introduction

Patent data have been used to study invention and innovation for over half a century (see Hall
et al., 2012 for a recent overview). Its popularity stems largely from the rich, consistent, and
comparable information that can be obtained for a huge number of entities, i.e. organizations,
individuals, and locations. Aggregating patents remains difficult because entities (inventors,
assignees, applicant law firm, and location) are only listed by their names on each patent
document and receive no unique identifier from the patent office (they essentially remain
inconsistent text fields). Looking at these fields as they appear on the patent document
reveals various forms of misspellings or correct but different name spellings. The ambiguous
names further limit the possibility to assemble patent portfolios for research as it is difficult to
foresee all the kinds of name abbreviations that can occur. As a result, individual researchers
spend significant amounts of time and resources on labor-intensive manual disambiguations
of relatively small numbers of patents. The intent of this paper is to provide a working
prototype for automating the disambiguation of these entities, with the ultimate goal of
providing reasonably accurate and timely disambiguation data.

A wide variety of efforts have recently been made to disambiguate inventor names (Flem-
ing and Juda 2004; Singh 2005; Trajtenberg et al., 2006; Raffo and Lhuillery 2009; Carayol
and Cassi, 2009; Lai et al., 2009; Pezzoni et al., 2012, Li et al. 2014). These efforts are
gaining in sophistication, accuracy, and speed, such that fully automated approaches can
now compete with smaller and hand crafted and manually tuned datasets.

Concurrent efforts have been made at the assignee level using automated and manual
methods. Hall et al. (2001) disambiguated the assignees and introduced their patent data
project under the auspices of the National Bureau of Economic Research (NBER). These data
are widely used, partly because many assignees have also been matched to unique identifiers
of publicly listed firms, which in turn enables easy matching with various other firm level
databases, e.g. Compustat. Producing updates of the NBER patent data is costly, however,
due to the quite sophisticated but still labor-intensive assignee disambiguation process.

Many patent applications contain information about the applicant’s law firm (though an
inventor or his/her employer need not retain a law firm, many do); however, to the best of
our knowledge, this field has never been disambiguated. Identifying unique law firms could
aid in understanding patent pendency and disambiguation of other fields. Location data
are available for most inventors (their home towns in particular) and while these data have
been used previously, there does not exist a comprehensive and automated approach to their
disambiguation.

To further aid the research community, this paper also includes application data for all
these fields as well. Almost all research to date has used granted patent data, which ignores
the many applications that were denied, and probably introduces bias. Application data have
been recently made available by the USPTO, but to our knowledge, have not been made
easily available to the research community yet. A simple but automated tool is also provided
that graphs reasonably sized co-authorship networks in real time, based on seed inventors or
a specification of a particular technology classification. We also provide a pairwise distance
measure between the 600 US patent classes that have been used since 1975, based on the
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lexical overlap of words in abstracts, description, and claims.
Here we introduce four automated disambiguation algorithms: inventor, assignee, law

firm, and location. All need much further accuracy improvement but they are fast enough
to disambiguate over 7 million patents and pending applications within days, and thus could
enable automated updates on all USPTO granted patents and applications. Application
data since 2001 are included as well. A simple user interface that emails data to users is
available and documented below. Code is available from the last author to any non-profit
research organization. For updates and addresses to authors, data, tools and code, please
see http://www.funginstitute.berkeley.edu/.

Data Sources

Figure 1 illustrates the automated tool chain for processing the patent data (for technical
details see Fierro, 2013). As data is downloaded from the USPTO weekly patent releases
hosted by Google, they are parsed, cleaned and inserted into a SQL database. The output
data from these processes are combined with data from the Harvard Dataverse Network
(DVN, see Li et al. 2014), which comes from from the National Bureau of Economic Research
(NBER), weekly distributions of patent data from the USPTO, and to a small extent, the
1998 Micropatent CD product. Disambiguations begin from this database.

Figure 1: Tool and data flow for automated disambiguations of US patent grant and appli-
cation data.

3



Every week, the USPTO releases a file that documents the patents granted the prior
week. Since the inception of digital patent record release in 1975, the USPTO has used
no less than 8 different formats for representing granted patents alone. Patents granted
since 2005 are available in various XML (Extensible Markup Language) schemas, which
allows the development of a generalized parser to extract the relevant information from
the patent documents. The Fung Institute parser transforms XML documents from the
canonical tree-based structures into lookup tables. Typical XML parsers must be tailored
to the exact structure of their target documents, and must maintain a careful awareness of
contingent errors in the XML structure. The Fung Institute parser circumvents this issue by
using generalized descriptors of the desired data instead of explicit designation. This robust
approach allows the parser to handle small schema changes without adjustment, decreasing
the need for constant development.

10/18/13 database-simplified.svg
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Figure 2: Abstract view of relational database for patent grant and application data.

As the data are extracted from USPTO documents, they are streamed into a relational
database that contains records linking patents, citations, inventors, law firms, assignees,
technology classes and locations. The database itself uses the MySQL database engine, but
the patent library uses an object relational mapper (ORM) to allow database entries to be
manipulated as Python objects. This simplifies development by removing the need to write
code for a specific database backend, and facilitates use by not requiring the user to be famil-
iar enough with relational databases in order to query and manipulate data. The raw tables
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in the database contain data as it appears in the patent record; this preserves the resolution
of the data and gives the user freedom to develop their own processes over the original data.
As the disambiguations are run, the raw records are linked to the disambiguated records.

Algorithms

Inventors1

We treat inventor disambiguation as a clustering problem; to disambiguate names, we seek
high intra-cluster similarity and low inter-cluster similarity amongst patent-inventor pairs.
While conceptually simple, the challenge is to accurately and quickly cluster approximately
5 million patents and 2 million applications and over 13 million names (roughly 17 million
when including inventors from non-granted applications). Inventor disambiguation uses the
assignee and location disambiguations described above; as a result, the inventor disambigua-
tion runs last.

Step 1: Vectorization

We define a document unit of a patent as an unordered collection of that patent’s attributes.
The current version attributes are 1) inventor name 2) co-authors (implicitly, by association
on the same patent), 3) the full text description of assignees, 4) the full primary patent
class and lexical distance between classes when the primary class does not match exactly,
and 5) the city, state, and country location. The occurrence of each attribute is used as a
feature (or independent variable) for training a classifier. We build a document-by-attribute
incidence matrix, which is sparse because a patent cannot use all possible attributes. Figure
3 illustrates.

1The following is developed directly from an internal technical report by Guan-Cheng Li: http://www.

funginstitute.berkeley.edu/publications.

5



Figure 3: Document by attribute matrix.

Suppose one or more inventors named John Davis have filed five patents, A, B, N, O, P.
Let the inventors named John Davis initially be one column (depicted by the black vertical
tab in Figure 3 - essentially blocking on the exact name ”John Davis”). We look closer at
the five rows that have 1s along that column, namely the index of the patents being filed by
John Davis. Having formed a sub-matrix from just these five rows and their attributes, we
can compute correlations between rows (patents) and columns (inventors).

Step 2: Distance Measurement

Distance measurements can be computed in a number of ways, e.g., Euclidean distance,
Manhattan distance or Chebyshev distance. Such measurements enable quantification of the
dissimilarity between inventors. Here, we adopt a discrete Euclidean distance. An exact
match is at a distance of 0; a non-match is at a distance of 1. All distances currently
require exact matches and hence imply a discrete 0 or 1 distance, with the exception of the
technology class distance.

d(~x− ~y) =
√

(~x− ~y)TΣ−1(~x− ~y) (1)

The distance between technology classes is a combination of an exact match when it
occurs, or a positive correlation, based on the aggregated words in each patent within the
two classes that do not match exactly. These distances between classes are available at
http://funglab.berkeley.edu/guanchengli/classdist.full.php; a subset that creates
”class clusters” that are cut off at 0.2) is at http://funglab.berkeley.edu/guanchengli/
classdist.php; an example of from the ”class cluster”file is:

6



• CLASS 027 (UNDERTAKING) - correlation 1.0000

• CLASS 217 (WOODEN RECEPTACLES) - correlation 0.0370

• CLASS 493 (MANUFACTURING CONTAINER OR TUBE FROM PAPER; OR
OTHER MANUFACTURING FROM A SHEET OR WEB) - correlation 0.0327

• CLASS 229 (ENVELOPES, WRAPPERS, AND PAPERBOARD BOXES) - correla-
tion 0.0273

Step 3: Bottom up K-means merging

Common names usually represent multiple persons, e.g., John Davis. If, for a toy example,
there were four such different people across the USPTO dataset, the algorithm should cluster
and report four unique identifiers for John Davis.

From step 1, we take the short and very wide matrix of exactly similar inventor names
and their attributes. To initialize, we treat each of these observations as a distinct person,
by assigning unique initial identifiers. Then, we cluster all these unique identifiers into one
block (there would be five in this toy example of John Davis). We then apply the K-means
clustering algorithm based on a bottom-up approach (that is, we start with five clusters).
The result is that some of these names might be merged and replaced with a single identifier.
K-means places an observation into the cluster with the most similar mean.

Step 4: Lumping name aliases

Once the k-means bottom up merging completes, we assign the centers of each cluster unique
identifiers and augment the matrix column-wise by their unique identifiers, as depicted in
Figure 5. In other words, we uniquely label each cluster believed to be a different John Davis
and apply this labeling to each column. This results in columns being split, and hence the
number of columns in the matrix increases, as separate inventors are identified. Compare
Figures 3 and 4, where Figure 3 has one column marked John Davis and Figure 4 has four
columns.
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Figure 4: Augmentation with unique identifiers: as individuals are identified, additional
columns are split out.

By lumping, we mean to merge naming aliases into one person if, in fact, they should
be one person based on what the other factors, such as co-inventor, assignee, class, or city,
suggest. This step is designed to treat Jim and James, Bob and Robert, or, Arnaud Gourdol,
Arnaud P Gourdol, Arnaud P J Gourdol, and Arno Gourdol as same persons (in our toy
example, J. Davis might be one of our inventors named John Davis). The algorithm assigns
inventors to the nearest cluster by distance. There are three possibilities for the naming
match which results in a combination or lumping of the clusters: 1) the last names agree,
the first names disagree, and the first letter of the middle names agree (if any), for example,
Jim and James, 2) the last names agree, the first names disagree, and the first letter of
the first names disagree, for example, Robert and Bob, 3) the last names disagree, the first
names agree, and the first letter of the middle names agree (if any), due to marriage and
last name change.

Summary and some technical details

The goal of the automated K-means algorithm is to produce high intra-cluster and low inter-
cluster similarity between inventors. The objective function to be optimized is expressed in
Equation (2) as:

φ(Q)(X, λ) = 1 −

k∑
i=1

ni

n− ni

∑
j∈{1,··· ,i−1,i+1,··· ,k}

nj · inter(X, λ, i, j)

k∑
i=1

ni · intra(X, λ, i)

(2)
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φ(Q) represents the cluster quality. If the quality is 0 or lower, two items of the same
cluster are, on average, more dissimilar than a pair of items from two different clusters. If
the quality rating is closer to 1, it means that two items from different clusters are entirely
dissimilar, and items from the same cluster are more similar to each other. This will result
in a denser k-mean. Figure 5 illustrates the relationship for our toy example - there is no
additional benefit past four.

We determine the cluster size by minimizing the sum of each clusters’ sum of the inter-
cluster’s squared distances. As illustrated in Figure 4, the five names, John Davis, are
grouped down to four clusters. When the sum no longer decreases, we have reached a
local minimum. In other words, increasing the cluster number to five wouldn’t decrease the
objective function and hence we stop at four clusters for John Davis.

Figure 5: The optimal number of clusters is determined by the point of decreasing returns
(4 in this example).

The distance between classes is calculated from lexical correlations of words in the ab-
stract, claims, and descriptions of each patent. For a given class C, we aggregate the words
of the patents that are classified into C (note, a patent can have multiple classes). These
form a one by two million vector into a data point, call it D (note, there are about two
million words that are used at least once in the USPTO patent titles, abstracts and claims).

We define the tech distance between class C1 an C2 by correlating D1 and D2, which is
cov(D1,D2) / (std(D1)*std(D2)). By doing so, we let the textual info speak for themselves.
A cheaper way is to calculate class co-occurrences, where the accuracy is dictated by USPTO
alone.

In summary, the disambiguator considers each inventor’s co-inventors, geographical lo-
cation, technology class, technology class distance, and assignee to determine lumping and
splitting of inventor names across patents. One advantage of vectorizing each inventor name’s
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attributes is that it allows for easy expansion of new attribute blocks to be compared.
Relative to previous efforts that disambiguated the entire U.S. patent corpus (Lai et al.

2009; Li et al. 2014), our splitting error for patents from January of 1975 through April of
2014 was 1.9% and our lumping error was 3.8%. The current method is much simpler and
runs much faster and has approximately 1/10th of the code of Lai et al. 2009, however,
it is slightly less accurate. Accuracy is assessed in the same manner as Li et al. 2014,
with the exception that patents from May to December of 2014 are not assessed. Future
work will update the comparison file; the current file is at http://funglab.berkeley.edu/
guanchengli/disambig.golden.list.txt.

Assignees

The assignee algorithm is much less sophisticated than the inventor algorithm; rather than
using a classifier to cluster individual entities, the assignee algorithm applies a crude Jaro-
Winkler string comparison. This method will usually group bad spellings and typographical
errors correctly, but fails if the strings become too dissimilar. Unfortunately, organizations
are often misspelled or alternatively abbreviated and listed in full with little modicum of
consistency. Assignees will change their names, often within a given year, and unpredictably
list name affixes.

For a given patent, the assignees are the entities, i.e. organizations or individuals that
have the original property rights to the patent. The assignee records are used to determine
the ownership of patents at the point the patent was initially applied for. This is sometimes
helpful for studies that use archival data, but it limits the possibility to assemble patent
portfolios of firms that bought or sold ownership rights to specific patents or firms that were
involved in mergers and acquisitions (M&As) over time. Ownership changes are not tracked
by the USPTO or any other institution yet though this may change (Stuart 2013). We will
outline some possible future directions below.

Consider the following results from a cursory search for assignee records that resemble
General Electric:

• General Electric Company

• General Electric

• General Electric Co..

• General Electric Capital Corporation

• General Electric Captical Corporation

• General Electric Canada

• General Electrical Company

• General Electro Mechanical Corp
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• General Electronic Company

• General Eletric Company

This incomplete list of some of the (mis)representations of General Electric demonstrates
the most basic challenge of getting past typos and misspellings of the same intended entity.
We provide an automated entity resolution for assignee records by applying the Jaro-Winkler
string similarity algorithm to each pair of raw assignee records (for details see Herzog et al.
2007). The Jaro-Winkler algorithm was developed in part to assist in the disambiguation
of names in the U.S. Census, and is the most immediately appropriate string similarity
algorithm for the task of resolving organization names. Two records with an overlap of 90%
or better are linked together. First, all assignees are associated with a “clean identifier”,
which consists of the organization name (or concatenated first and last names) of the assignee,
lower cased, with all non-letter and non-whitespace characters removed. This simplifies the
comparison process. Following this normalization, all assignees are placed into a block
according to the first letter of their clean identifier. This reduces computational demands
and allows us to hold a smaller chunk of the assignees in memory at each step, and achieves
similar accuracy.

Disambiguation occurs within blocks, resulting in a set of “pools” indexed by a central
assignee and containing assignees that are within some Jaro-Winkler threshold of that central
assignee. As assignees are popped off the end of the list of non-disambiguated assignees, they
are compared against each of the central assignees. If their clean identifier is within the Jaro-
Winkler threshold of some central assignee, then the candidate is placed in that pool; else,
it is placed into a new pool of which it is the only member. This continues until all assignees
are placed into a pool. A record is chosen from the pool to act as the disambiguated record
for that pool, and all raw assignee records are linked to that disambiguated record.

The assignee and law firm disambiguation process follow the same basic model. The
unaltered records differ in structure from the inventor records because the majority of as-
signee and law firm records are organizations rather than individuals. Entity resolution of
personal names suffers primarily from duplicates - people who have the same name but are
not the same individual. Organizational names are intrinsically free of this sort of false
clumping. Instead, the disambiguation of organizational names is made difficult by three
common patterns: acronyms (e.g. “IBM” for “International Business Machines”), corporate
affixes (“Corporation” vs “Corp” vs nothing at all) and general misspellings.

Locations 2

A variety of location data are associated with patents, though unfortunately those data are
not always consistently available. We exploit the most consistent data, that of inventors’
hometown, which provide two main challenges. First, we must identify ambiguous locations,

2The following is taken from an internal technical report by Kevin Johnson: http://www.funginstitute.
berkeley.edu/sites/default/files/GeocodingPatent.pdf.
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matching them consistently with real location. Second, we must assign latitude and longitude
information to these locations, allowing them to be easily mapped.

There are over 12 million locations present in the patent files provided by the USPTO.
Each location is split into up to five fields, depending on what information is available: street
address, city, state, country, and zipcode. When non-unique locations are filtered out, there
are roughly 900,000 unique locations to identify. However, not all of these unique locations
are relevant.

It is rare for all five fields to be present; for example, only 6.5% of locations have any
information in the street or zipcode fields. Some locations contain street-level data in the
city data field, making it difficult to understand exactly how precise the data are. However,
we believe that the vast majority of locations are only precise to the city level. In addition,
there is relatively little value in being accurate to a street level as opposed to the city level,
since most analysis takes place at a city or state level. Therefore, we disregard all street and
zipcode information when geocoding the data. Avoiding these data also minimizes privacy
concerns for the inventors.

After disregarding the street and zipcode fields, there remain roughly 350,000 unique
locations to analyze. These locations are poorly formatted and difficult to interpret for
many reasons.

Accents are represented in many different ways in the data. Often, HTML entities such as
&#x212b; are used. However, not all representations are so straightforward. For example, all
of the following strings are intended to represent the letter , often referred to as an angstrom:
“.ANG.”, “.circle.”, “&angst;”, “dot over (A)”, and “acute over (&#x212b;)”. These must
be cleaned and converted into single characters.

Some foreign cities contain additional information that must be identified and dealt with
consistently. For example, many cities in South Korea end with the suffix “-si”, which
indicates that the location is a city - as opposed to a county, which ends with the suffix
“-gun”. These suffixes are represented in a variety of ways, and should be interpreted
consistently.

In some cases, data is recorded incorrectly on a consistent basis. For example, locations
in the United Kingdom are often recorded with the country code “EN,” and locations in
Germany can be recorded as “DT.”

In some cases, correct data for one field may be incorrectly assigned to a different field.
For example, there are seven entries for a location with a city field of San Francisco and a
country field of CA. There is no city named “San Francisco” in Canada; instead, “CA” was
erroneously placed into the country field instead of the state field. This problem is especially
prevalent with foreign names. The state and zipcode fields only contain information for US
locations. When such information exists for foreign locations, it is added to the city field -
either in addition to or instead of the actual city.

All manner of creative and potentially ambiguous spellings can be found within the data.
For example, all 31 of the following spellings are intended to refer to the “San Francisco” in
California:

• San Francais
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• San Francesco

• San Francico

• San Francicso

• San Francis

• San Francisc

• San Franciscca

• San Franciscio

• San Francisco

• San Francisco County

• San Francisco,

• San Francisco, both of

• San Franciscos

• San Franciscso

• San Francisico

• San Franciso

• San Francisoc

• San Francisoco

• San Francsco

• San Francsico

• San Francsicso

• San Frandisco

• San Franicisco

• San Franicsco

• San Franisco

• San Franscico

• San Franscisco
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• San Fransciso

• San Fransico

• San Fransicso

• San Fransisco

This is by no means an exhaustive overview of the many ways that “San Francisco” can
be spelled. Identifying and correcting these misspellings is an important challenge.

Converting location names from languages with different alphabets is a difficult task. To
use a simple example, the city “Geoje” in South Korea is represented in six different ways:
Geojai-si, Geojae-si-Gyungnam, Geoje, Geoje-si, and Geoji-si. The more complex the name,
the more ways it can be converted into English, and the more difficult it is to identify what
the name of the city is supposed to be from a given romanization. Before performing any
disambiguation work, we first focus on cleaning the raw location data. After cleaning, each
location consists of a comma-separated string of the format “city, state, country”.

Because the format used to identify accents is so idiosyncratic, we individually identify
and replace many accent representations using a handcrafted list of replacements. In addi-
tion, we automatically convert HTML entities to their corresponding Unicode characters.

We make some corrections for consistent error patterns that are difficult for our disam-
biguation method to decipher automatically. Though the list of corrections is small, this will
be a major area of development going forward as we learn what kinds of locations are most
difficult to interpret.

We deal with mislabeled states by using a format for cleaned locations that does not
explicitly label the state and country fields. Though this slightly increases ambiguity, our
disambiguation method is capable of interpreting the information. For our purposes, is better
to have slightly ambiguous data than unambiguously false and misleading data. In addition,
we automatically remove house numbers and postal code information from the city field.

In addition to the above, we perform a variety of minor alterations and corrections
- pruning whitespace, removing extraneous symbols, and formatting the locations into a
comma-separated format.

After cleaning the data, approximately 280,000 unique locations remain that must be
disambiguated. For this process, we consulted with Jeffrey Oldham, an engineer at Google.
He used an internal location disambiguation tool similar to that used by Google Maps and
gave us the results. For each location, Google’s API returns six fields:

• city, the full name of the city. For example, “San Francisco” or “Paris.”

• region, the name or two-letter abbreviation of a state, province, or other major in-
stitutional subdivision, as appropriate for the country. For example, “TX” or “le-de-
France.”

• country, the two-letter country code corresponding to the country. For example, “US”
or “FR.”
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• latitude and longitude, the latitude and longitude of the precise location found,
depending on how much information is available.

• confidence, a number ranging from 0 to 1 that represents how confident the disam-
biguation is in its result. If no result is found, the confidence is given as -1.

Because the latitude and longitude data provided are more precise than we want them to
be, we run the results of the disambiguation through the geocoding API again, giving each
location a consistent latitude and longitude. Preliminary results suggest that we will be able
to geocode more than 95% of all locations with reasonable accuracy. The most recent version
of our code can be found online at GitHub (Johnson 2013).

Applications

Treatment of application data since 2001 is similar to that of grant data, demonstrating the
ease with which the current preprocessing framework handles new formats. To gather data
from the six SGML and XML patent application formats released by the USPTO within the
past decade, we have developed three application data format handlers which conform raw
application data to a database schema similar to the one defined for patent grants.

Application parsing also fits the patterns established for gathering grant data: the same
processes of parsing, cleaning, and eventually, full disambiguation, are automated for appli-
cations (in fact, the disambiguations are performed jointly between the two datasets). In
addition to the old configuration options that allowed users to specify which processes to run
and which data files to use for patent grants, there are new options to process either grants
or applications, or both. Therefore, the same commands and programs previously used only
for grants can now process grants and applications, with minimal configuration changes.

The raw application data is ingested into a database table separate from grants. Appli-
cations which are granted will be flagged and their records linked. While there are a few
differences between the application schema and the grant schema - grants have references to
their application documents, for example, while applications, of course, do not - the crucial
tables involving inventors, assignees, lawyers, and locations remain the same, in both their
raw and cleaned forms. The uniformity of application data and grant data ensures that our
current means of disambiguation and access are easily adapted to the new application data,
simply by changing the schema from which our ORM draws its data.

Results

We will post a simple diagnostic readout for basic descriptive statistics and some graphs
(please search the Fung Institute Server if the interface is not at http://rosencrantz.berkeley.edu/;
bulk downloads are available at http://rosencrantz.berkeley.edu/batchsql/downloads). This
section highlights some of those diagnostics. Kia Silverbrook is the most prolific U.S. inventor
with 4,666 patents (a March 26 2014 Wikipedia entry lists 4,665 patents). Table 1 lists the
raw and disambiguated patent grant data for each disambiguation where available. Figure
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6 illustrates yearly grants 1975 to 2014, inclusive. Figures 7 and 8 compare the number of
cities in each state where patenting has occurred between 1975 and 2014; note the dramatic
decrease in the number of cities and relative increase in New York and Pennsylvania after
disambiguation.

Number of observations in raw data Number of observations in
disambiguated data

Granted Patents 5,399,259 5,399,259
Applications 5,328,752 5,328,752
Inventors 12,429,538 3,752,775
Assignees 5,128,871 387,500
Law Firms 1,374,634 121,268
Locations (U.S. Cities) 61,840 16,114

Table 1: Descriptions of raw and disambiguated data. Except for applications, all numbers
refer to only granted patents.

Figure 6: US utility patent grants by year, from beginning of January 1975 through end of
December 2014.
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Figure 7: Number of unique raw cities by U.S. state, from beginning of January 1975 through
end of December 2014.

Figure 8: Number of unique disambiguated cities by U.S. state, from beginning of January
1975 through end of December 2014. Note decrease in the number of entities compared with
raw data in previous figure.
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A Simple Database Access Tool

Our database process makes use of the MySQL database engine to remain scalable and
efficient, but to facilitate access to the data, we provide a simple, user-friendly web
interface for downloading segments of data. The tool (source code available at
https://github.com/gtfierro/walkthedinosaur) translates a simple web form into a
query that is executed over the patent database. Users specify the desired segments of
patent data (e.g. title, grant year, inventor name, etc) and constraints on those segments.
The web tool queues the user’s request, and the user is emailed a download link to a
CSV/TSV (comma/tab-separated values) file when the query has completed. Figure 9
provides a technical block diagram of the process.

Figure 9: Block diagram of database access tools.

An example

To get the title of all the patents that had been invented in Texas between the period
January 2005 and February 2005, one should select the check besides “Title of Patent” in
primary information. In the filters section, set From as 2005-1-1 and To as 2005-2-1. Also,
type ‘TX’ in inventor’s state textbox. Finally, type in your email address on the bottom of
the page, choose the filetype, and click on “Submit”. Figure 10 illustrates the Filter
interface. This form is translated into the SQL query:

SELECT patent.title FROM patent, rawinventor, rawlocation WHERE

(patent.date BETWEEN ’2005-1-1’ AND ’2005-2-1’)

AND (patent.id = rawinventor.patent_id)

AND ((rawlocation.state LIKE ’%TX%’)

AND rawlocation.id = rawinventor.rawlocation_id);
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Figure 10: Filter interface with law firm

To get the names (first and last) of the law firms that prosecuted a patent in Michigan
between January 2005 and February 2005, for inventors and assignees that were also in
Michigan, select First Name of Law firm and Last Name of Law firm under Law firm
Information (see Figure 11). In the filters section, make sure to fill in dates as before, and
this time, fill in the textbox for Inventors with State with ‘MI’ and same for the Assignee’s
State textbox. Finally, just as before, fill in your email, choose your filetype, and click on
“Submit”’. This form is translated into the SQL query:

SELECT rawlawyer.name_first, rawlawyer.name_last FROM

patent, rawlocation, rawinventor, rawassignee, rawlawyer WHERE

(patent.date BETWEEN ‘2005-1-1’ AND ‘2005-2-1’)

AND (patent.id = rawinventor.patent_id)

AND (rawassignee.patent_id = rawinventor.patent_id)

AND (rawlawyer.patent_id = rawinventor.patent_id)

AND ((rawlocation.state LIKE ‘%MI%’)

AND rawlocation.id = rawinventor.rawlocation_id)

AND ((rawlocation.state LIKE ‘%MI%’)

AND rawlocation.id = rawassignee.rawlocation_id);
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Figure 11: Filter interface

Currently, jobs take anywhere between 2 minutes and a couple hours based on how much
information matches the records in the database. This is due to the fact that the database
is running with limited memory, meaning multiple queries cannot run simultaneously.

A Co-Inventor Network Visualization Tool

Social networks have become increasingly popular, yet visualizing such networks requires
time and technical expertise. Using the disambiguated patent database, we have developed
a tool that dynamically renders the immediate co-authorship networks for any inventor(s)
chosen by the user.

Starting from chosen (”seed”) inventors, the tool can find all patents these seed inventors
have applied for within the chosen dates. For each patent, it then creates a co-inventor link
between all possible pairs of the patent’s inventors. For a co-co-inventor network (defined
as 2 ”generations” or levels of co-authorship), it then uses this larger set of co-inventors as
the ”seed” inventors and cycles through again. In principle, this process can be repeated to
n-generations of co-inventorship. To limit demands on bandwidth and processing, users can
currently only choose one, two, or three generations. Figure 12 diagrams a process flow.
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Figure 12: Flow Diagram for Network Visualization Tool

This program is driven by PHP, drawing data from the MySQL patent database and
storing results in a separate, local MySQL database. After co-inventor relationships have
been calculated, the end result is stored in a JSON-formatted file for visualization. The
annotated PHP/MySQL code used to generate this data (with database access credentials
removed) can be found at https://github.com/oreagan/socialnetwork.

Once all co-inventor relationships have been identified, the tool generates a visualization in
which inventors are represented by dots that act as charged particles, repelling one
another, but with co-inventors bound together. The visualization itself uses the
Data-Driven Documents (D3) force layout graph, modified from the publicly available
version at https://github.com/mbostock/d3/wiki/Force-Layout. This graph uses a
Barnes-Hut algorithm (http://arborjs.org/docs/barnes-hut) to calculate the forces between
the charges and find an equilibrium position. This process renders directly on the user’s
browser, typically within seconds. Particularly large networks can take up to minutes to
generate and render.

Another search option will find all inventors who have patented within a technology
subclass in the chosen time window, then expand out n-generations from there. Figure 13
illustrates an example from the semiconductor industry, with two additional co-authorship
relationships, for patent sub-class 438/283 from 1998-2000.
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Figure 13: USPTO Semiconductor Patents in Sublass 438/283 from 1998 to 2000, with 2
additional levels of co-authorship included.

Potential improvements

The methods presented here are simple, and while less accurate than some prior
approaches, provide an easier platform for improvement.

Currently, XML data are parsed from 2010 onward; before then, we rely on the Harvard
Dataverse data (Li et al. 2014). The data ideally should be parsed from the raw XML for
all years. All locations for the assignee and all inventors should be presented, rather than
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just the first inventor. The social network illustration tool could be improved to reflect
failed applications as well as successful patents. Ideally, this would be rendered such that
the two networks are laid out similarly, allowing easy identification of the failed inventions
and relationships.

To improve the inventor accuracy, one could introduce additional attributes, including law
firms, non-patent and patent prior art, and all technology subclasses. The last has typically
been done with patent classes (see Li et al. 2014). Technology classes evolve, however, and
get abolished or established over time. Another approach would develop a bag of words, or
descriptive “tags”, that would differentiate each patent from another. By assuming that
the words, or tags, or certain keywords are statistically specific to inventors, we may feed
patent contents as another block, to aid disambiguation. Distance measures can also be
relaxed, such that close but non-exact matches can contribute to the correct clustering.

A number of new measures will be made available in the next revision of this paper. We
will provide a measure for each patent of whether a new word appears for the first time in
the patent lexicon, as well as how many times that word is used subsequently. This will
provide an easily interpreted measure of novelty along with a measure of how successful
that novelty was in future use (analogous to future prior art citations, through arguably a
more accurate measure of novelty and the impact of that novelty). Finally, we will include
a count of future blocking actions from the USPTO PAIR data; these data will indicate
which patents blocked subsequent invention. Assumedly, these patents were more valuable
and/or better written.

To improve the assignee accuracy, additional metadata and more global string comparisons
might be utilized. Normalizing common organizational affixes such as “corporation” and
“incorporated,” and weighting frequent (normalized) affixes with the invers ratio of their
occurrence will certainly increase the accuracy of the disambiguation process. Additional
improvements will be possible by incorporating the CONAME files available from the
USPTO, which contain harmonized names of the first assignee of patent grants through
2012, but were not available to us at the time of writing. More sophisticated approaches
will take acronyms into account in order to further consolidate records. It would also be
useful to train the disambiguation algorithm with the specific improvements identified by
the NBER, which would tackle some of the specific issues that arise when non-identical
names within two datasets have to be matched. This will also help to provide unique and
commonly used firm identifiers, e.g. those used by Compustat, to all relevant patents. A
related task is to compile comprehensive sets of patent portfolios across conglomerates and
large organizations that operate under different names of their subsidiaries. A test
download of the recently available Bureau van Dijk (BvD) database suggests that
significant improvements over previous approaches might be possible.
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Using application data to decrease sample bias

To date, almost all patent based research has drawn inferences from granted patents; for
those studying the process of invention or the patenting process, this amounts to sampling
on the dependent variable. Hence, all this work (literally thousands of papers) could be
revisited. For example, work that studies the social networks of successful collaboration
could look at the impact of unsuccessful collaboration (Fleming and Juda 2004). Work
that models invention as a process of exploration vs. exploitation (March 1991, Balsmeier,
Fleming, and Manso 2015) would benefit from considering failed applications, as this work
predicts that exploration should increase both breakthroughs and failed inventions (if the
theory is correct, then exploration should result in more granted patents with 0 citation
and failed applications). Continuing with the theme of extending the observed distribution
of attempted invention, it would also be interesting to see if networks more prone to failure
were more similar to networks that produced uncited or breakthrough patents; in other
words, did the network fail because the inventors were not taking enough risk in order to
cross the threshold of being granted a patent, or too much risk (that also might have
resulted in a breakthrough). A great deal of recent work has focused on the application
process at the USPTO (Carley, Hedge, Marco 2014); work in this genre could benefit from
more complete data on the failed applications.

Conclusion

Automated updates and disambiguations of U.S. patent data would greatly facilitate
fundamental and policy research into innovation, innovation policy, and technology
strategy. We provide an initial set of fully automated tools aimed at accomplishing this
goal for patents from 1975 through the end of 2014. Some of the tools are crude but
provide a platform for future improvement. These tools provide inventor, original assignee,
law firm, and geographical location disambiguations. Application data for all these fields
will also be available and all data will be accessible with a public interface that emails
requested data. The work also provided a tool that dynamically renders patent inventor
networks, a user interface for generating .csv files, and a distance measure between classes.

Ideally, a sponsor will be found, such that these data can be curated and updated on a
weekly basis.
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