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Knowledge graphs (KGs) are machine-readable representations of
cyber-physical systems (CPS) which can be incomplete due to the
size and complexity of CPS. Knowledge graph completion (KGC)
models can predict missing edges, but perform poorly and fail to
generalize on CPS KGs due to the high heterogeneity and small size
of those graphs. In this work, we propose an ontology-informed
heterogeneous Graph Neural Network (GNN) architecture that in-
tegrates hierarchical parent-class layers to enhance generalization
in CPS KGs. Our approach outperforms traditional heterogeneous
GNNs and Node2Vec-based methods in edge prediction tasks, of-
fering a promising solution for CPS KGs.

CCS Concepts

« Computer systems organization — Embedded and cyber-physical
systems; « Computing methodologies — Knowledge represen-
tation and reasoning; Neural networks.
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1 Introduction

Cyber-physical systems (CPS) use embedded sensing and controls
to optimize operations and perform anomaly detection and fault
diagnosis. CPS lack structured machine-readable representations
despite their data-rich nature, making it difficult to develop new
applications. Ongoing research into knowledge graphs (KG) aims
to standardize CPS representations and simplify software config-
uration for key applications like anomaly detection and model-
predictive control [1, 5]. KGs are directed, labeled graphs that model
relationships (edges) between entities and properties (nodes). On-
tologies define the structure and vocabulary of KGs to unify labels
and enable interoperability between multiple KGs. Fig. 1 shows an
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Figure 1: (a) A cyber-physical knowledge graph representing
a segment of an HVAC system in a building. The nodes in
the model are defined based on an ontology, as illustrated in
(b). For example, AHU1 is an instance of the “Air Handling
Unit” class. (b) The ontology defines the class hierarchy.

example CPS modeled with the Brick ontology [1]. Creating KGs
is challenging due to the lack of structured metadata in CPS and
its inherent heterogeneity. [2] and automated methods often miss
nodes or omit edges, resulting in incomplete KGs.

Knowledge graph completion (KGC) [3] techniques have poten-
tial to improve incomplete KGs. Graph Neural Networks (GNNs)
[8] are effective for CPS tasks such as object detection and anomaly
detection [4], but have not been applied to CPS KGs for completion
tasks. CPS KGs face challenges during knowledge representation
and model construction due to their small size and high hetero-
geneity (§2), meaning multiple node and edge types. These charac-
teristics of CPS KGs necessitate specialized GNN architectures to
efficiently handle ontology complexity and scalability. To address
these challenges, we develop a custom heterogeneous GNN archi-
tecture that incorporates ontology-aware knowledge, as detailed
in §3. Our model enhances generalization for low-density data by
introducing parent-class layers, allowing nodes to inherit informa-
tion from their hierarchical structure. Our evaluation in §4 shows
that ontology-aware heterogeneous architecture predicts missing
relationships with higher accuracy.

2 Challenges for Graph Learning in CPS

The first step in applying KGC is knowledge representation, or
embedding, where the graph is represented as vectors to be used
in GNNs. These embeddings are learned from individual triples
or graph topology, often using random walk-based methods, such
as Node2Vec [6]. While topology-based methods perform better,
they rely on large and rich neighborhoods typical of general knowl-
edge bases which contain millions of nodes and edges. CPS KGs
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Figure 2: Comparison of accuracy across models

are significantly smaller [9] and highly site-specific with varying
structures and relationships. Existing datasets do not sufficiently
cover the relations needed for a GNN to generalize to unseen KGs.

Another consideration is KG heterogeneity, or the diversity of
the edge and node types in the graph. GNNs for heterogeneous KGs
require distinct subnetworks for each combination of edge and node
class, allowing models to treat nodes and edges differently based
on context. Each CPS KG has different classes and edges present,
depending on what assets are deployed in the cyber-physical en-
vironment. Our analysis of CPS KGs shows that these graphs can
have 30x-450x more relation types than existing knowledge graph
datasets. Large number of classes and relation types increases the
size of heterogeneous GNNs and can impact training time if each
type gets its own subnetwork [7]. For instance, Brick [1] contains
1253 classes and 54 edge labels, creating 42M possible relation types.

3 Ontology-Informed Heterogeneous GNNs

The key challenge in CPS KGs is predicting unseen relation types in
the test graph. To address this, we develop a custom heterogeneous
GNN architecture that incorporates ontology-aware knowledge. A
knowledge graph consists of set of triples (s, p, 0) and a relation
type (Cs, p, Co) is defined by a subject class Cs, an edge label p,
and object class C,. Traditional heterogeneous GNNs model treat
each relation type independently, failing to capture the ontology’s
hierarchical structure. Our architecture enhances the network by
incorporating parent class information from the ontology, creating
new relation based on the parents to generalize across unseen KGs
(Figure 3). This allows the model to learn from the hierarchical class
structure (Figure 1) of the ontology reducing dependency of the
presence of a specific entity type in the training set.

We expand GNN sub-networks to include parent-class combina-
tions, improving generalization but increasing the average network
size from 347.22 layers, 1.1x108 parameters to 555.16 layers, 1.7x108
parameters with a 2x increase in the training time.

4 Experimental Evaluation

We conduct experiments using the Mortar dataset [5], consisting
of 45 independent CPS KGs, to test how well our model performs
in link prediction tasks. We use each graph to train an indepen-
dent model, and test all models across each of the 45 graphs. We
compare Node2Vec-based models with two heterogeneous GNN
architectures (GraphSAGE and GAT), both with and without our
ontology-aware structure.

Fig. 2 shows that GraphSAGE with ontology-aware featurization
is the best-performing model with a median accuracy of 62%. Our
results suggest that ontology-aware heterogeneous GNNs improve
model performance over traditional methods like Node2Vec.
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Figure 3: Adding GNN layers for super classes increases cov-
erage on unseen graphs.

5 Conclusion

In this work, we address the challenge of knowledge graph com-
pletion in CPS KGs by developing an ontology-informed heteroge-
neous GNN architecture. By incorporating parent-class layers, our
approach improves link prediction accuracy and enhances gener-
alization in sparse CPS KGs. Experimental results show that our
method outperforms traditional graph learning techniques, par-
ticularly in handling missing relationships. As future work, we
will explore node prediction in CPS KGs to fully address the KGC
problem in this domain to improve accuracy.
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