
Building Application Stack (BAS)

Andrew Krioukov, Gabe Fierro, Nikita Kitaev, David Culler
Computer Science Department

University of California, Berkeley

krioukov@cs.berkeley.edu, gt.fierro@berkeley.edu,
kitaev@berkeley.edu, culler@cs.berkeley.edu

Abstract
Many commercial buildings have digital controls and ex-

tensive sensor networks that can be used to develop novel
applications for saving energy, detecting faults, improving
comfort, etc. However, buildings are custom designed, lead-
ing to differences in functionality, connectivity, controls and
operation. As a result today’s building applications are hard
to write and non-portable. What is required is a form of mass
customization that allows applications to automatically adapt
to differences in buildings.

We present BAS, an application programming interface
and runtime for portable building applications. BAS pro-
vides a fuzzy query interface allowing application authors
to describe the building components they require in terms
of functional and spatial relationships. The resulting queries
implicitly handle multiple building designs. BAS also incor-
porates a hierarchical driver model, exposing common func-
tions of building components through standard interfaces.

We demonstrate and evaluate BAS by implementing two
novel applications – an occupant HVAC control app and a
ventilation optimization app – on two different buildings us-
ing raw building control protocols and then again using BAS.
We show that the BAS code is much shorter, easier to under-
stand and does not change for each building.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Process Control Systems

General Terms
Design, Experimentation, Management

Keywords
Building Applications, Controls, Energy Efficiency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Buildsys’12, November 6, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1170-0 ...$10.00

1 Introduction
Commercial buildings are one of the largest consumers of

energy in the United States, accounting for 19% of delivered
energy [18]. Nearly half of this energy (42%) is consumed in
buildings with existing digital control systems [9] compris-
ing some of the largest deployed sensor networks and often
containing thousands of sensors and actuators per building.
This existing infrastructure is a potential goldmine, enabling
new analyses and cyber-physical applications that can be im-
plemented in software alone. These applications have the po-
tential to drastically improve building energy use, occupant
comfort, reliability and maintenance (e.g. [10, 12, 17]).

However, the widespread development and use of these
apps is inhibited by lack of portability. Buildings are cus-
tom designed, using similar templates but each with a unique
shape, layout, heating, ventilation, air conditioning, light-
ing and electrical system. Today, this necessitates writing
custom applications for each building, requiring a deep un-
derstanding of each building’s architecture, connectivity, and
control operation – effectively, the building equivalent of
programming in assembly. Instead, what is required is a
form of mass-customization, a way of writing applications
to automatically adapt to a wide range of buildings.

BAS is an application programming interface and runtime
that enables writing portable code by providing methods to
explicitly and implicitly handle differences in building de-
signs. A key insight of BAS is the use of fuzzy, relativistic
queries to allow authors to express their high-level intent in
a way that is inherently portable, e.g. “turn off the lights
for top floor cubicles near windows,” as well as support-
ing programmatic exploration of a building’s specific com-
ponents, allowing applications to explicitly handle building
differences. Thus programmers can alternate between macro
and micro level views of the building (e.g. “lights on the
top floor” vs. “Light Relay 1023”) to express both general
intentions and specific actions.

Existing protocols such as BACnet [1], OPC [14], and
LonTalk [7] provide discovery, networking and read/write
access to sensors and actuators. This functionality is crucial,
but alone is insufficient for portability. Applications must
know which components to access and how they relate to
each other. This requires key metadata: how a component
is functionally linked to others, where a component is phys-
ically located and how it can be addressed on the network.
BAS provides a way to express this information as a graph



of objects and provides a query API for applications to effi-
ciently refer to the desired components in a portable way.

Of course, this metadata can also be hardcoded in look-
up tables or configuration files, as it is often done in today’s
building apps, but this ad-hoc approach is error-prone and in-
efficient. Having each application create its own view of the
building requires all authors to have a deep understanding of
each building’s design and requires all applications to be up-
dated if a change is made or error corrected in the building
model. Moreover, creating an easy to use interface once ben-
efits all applications and lowers the bar for new development.

We make the following contributions: (1) we propose a
fuzzy query API and graph representation of building meta-
data (2) we construct a hierarchical driver model for building
components, minimizing building specific code and (3) we
evaluate BAS by implementing two control applications, ex-
ecuted on two real buildings on campus, first using only the
existing building control protocol and then again using BAS.
2 Architecture

Query-based API

Building
Remote

App App App

Driver

Driver Driver

Driver

Driver

Functional links,
Spatial m

ap

Interconnect Abstraction

HW HW HW

Figure 1. BAS layered architecture.

The goal of BAS is to provide an API and runtime that
allow applications to run on a wide range of buildings. At
the same time, BAS aims to minimize the effort required to
set up the system on a new building by factoring out common
components and partially automating metadata collection.

The BAS architecture is shown in Figure 2. Buildings
with digital controls contain sensors and actuators wired to a
number of controller panels: embedded computers with ana-
log input and output ports. In turn, these controllers are net-
worked with serial or ethernet links and optional routers and
gateways, connecting to a computer with a graphical inter-
face for monitoring the building. Buildings often have mul-
tiple independent control networks, such as a lighting control
system and an HVAC controller.

At the lowest level, BAS interfaces with the building hard-
ware through a control protocol such as BACnet or OPC. The
protocol exposes a network view of the building components
consisting of a point name, control panel identifier and op-
tional description string for each sensor output and actuator.
For example, a point named “SDH.AH1A.SF VFD:INPUT
REF 1” on panel “SDH.MBC-01” represents the speed input
to the variable-frequency drive controlling the supply fan in

one of our buildings. This point takes a value between 0 and
100 corresponding to a scale of off to maximum speed for
the fan. The BAS interconnect abstraction layer acts as a
hardware interface, exposing all points from different con-
trol networks with different protocols in a uniform way by
using the sMAP architecture, as discussed in Section 5.

While having access to building sensor and actuator
points is sufficient for implementing applications, point
names and functionality are very building-specific, thus pro-
gramming at this level leads to non-portable code. The BAS
driver layer abstracts groups of points into functional objects
with standardized methods. Each driver type must expose
at least a minimum predefined interface. For example, fan
drivers expose “get speed” and “set speed” methods. These
methods apply to many different fan designs, e.g. variable
speed, 3-speed, or on/off fans. Drivers can be built up hierar-
chically so that common functionality is implemented once,
as shown in Figure 4.

The objects exposed by drivers correspond to physical
components within the building, e.g. chillers, light banks,
electrical circuits, etc. Drivers abstract the inner workings of
these devices, but since buildings are all constructed differ-
ently the functional and spatial relationships between these
objects are crucial. Being able to answer which air han-
dler serves a particular room or which circuit powers a light
bank is key to expressing control actions in a general way.
BAS captures functional relationships in a directed graph of
“supplies” relations, effectively capturing airflow loops, wa-
ter loops and electrical trees. In addition, BAS incorporates
spatial tags stored in a GIS database, allowing us to answer
queries such as, “select the lights for all rooms near win-
dows” or “select the air handler that supplies room 123.”

At the highest level, BAS provides a query-based API for
writing applications. The API consists of a selector query
for choosing a set of driver objects corresponding to build-
ing components based on object name, type, attributes, func-
tional relationships and spatial relationships. Each object
type has a predefined minimal set of methods, i.e. sen-
sor readings and actuation capabilities. The application can
make use of these guaranteed methods or discover all avail-
able methods. Similarly, objects can be selected with a pre-
cise query, e.g. “the thermostat for room 123,” or by explor-
ing the graph of functional relationships, e.g. “all tempera-
ture sensors upstream of room 123.” Applications access the
BAS API through a web service and can be written in any
language.

3 Query Interface
The BAS query interface is designed to allow applica-

tion authors to select objects based on type, attributes and
functional or spatial relationships. This allows authors to de-
scribe the particular sensor or actuator that the application
requires rather than hardcoding a name or tag that may not
apply in differently designed buildings.

Queries are expressed in terms of names indicated with a
$ prefix, tags starting with # and relationships indicated by <
and > operators with A > B meaning that A supplies or feeds
into B. For example, an air handler might supply variable
air volume (VAV) boxes that supply rooms; a whole building



Table 1. Example BAS queries showing fuzzy and relative lookups. A > B means A that feed into or supplies B; X < Y
means the X that is fed by or supplied by Y . Operators are right associative.

#FLOOR All floor areas
#LIGHT > $Floor 1 All lights on the first floor
#AREA < $Lightbank 1 Zones served by light bank 1
#AH > $Room 123 All air handlers that serve Room 123
#AREA < #AH > $Room 234 Areas served by the same air handler as Room 234
#ELECMETER > #AREA < $Air Handler 1 Power meters for zones served by AH1

Spatial Domain (#AREA)

HVAC Domain (#HVAC)

Constant Flow Chilled Water Loop VAV
Damper

Heating 
Coil

Airflow 
Sensor

Chiller

PumpTemp 
Sensor Temp 

Sensor

Cooling 
Tower

Electrical 
Domain 
(#ELEC)

Building 
Electrical 

Meter

Submeter

Lighting 
Domain 

(#LIGHTING)

Light 
Relay

Light 
Relay

Submeter

Air Handler
Outside 

Air 
Damper

Cooling 
Coil

Temp 
Sensor

Temp 
Sensor Fan

VAV
Damper

Heating 
Coil

Airflow 
Sensor

Figure 2. Partial functional and spatial representation of our test building. Directed edges indicate a supplies or feeds
into relationship. BAS queries are executed by searching the graph.

power meter may feed into multiple breaker panels that sup-
ply different floors. Query strings are evaluated right to left
(right associativity) with the left-most operand indicating the
object to return. Table 1 lists example queries.

Internally, BAS stores a directed graph of objects to an-
swer queries. Figure 3 shows a partial rendering of func-
tional and spatial graph for one of our two test buildings.
Objects are exposed by drivers and can be low-level (e.g.
damper, sensor, fan) or high-level (e.g. air handler, chilled
water loop). Directed edges indicate the flow of air, wa-
ter, electricity, etc. Edges are purposefully unnamed to al-
low for buildings with many different designs to be repre-
sented without introducing new names. Tags are automat-
ically applied based on the type of driver instantiated and
the interface it implements. Tags describe the object type
and functionality. They are intentionally low-level and are
not meant to uniquely identify objects. The intent is to use
relationships to select objects in a general way. For ex-
ample, a supply air temperature sensor can be selected as
#TEMP < #COOL < $Air Handler 1, that is, the tempera-

ture sensor down stream of the cooling element in Air Han-
dler 1. This allows the application to run with both a standard
temperature sensor built into the air handler as well as a less
common building design with a temperature sensor installed
in the duct work or at a VAV input. A partial list of tags is
show in Table 2.

In addition to functional relationships, BAS also stores
spatial data. Spatial areas are defined as polygons on floor
maps of the building and stored in a GIS database [15]. Ar-
eas are defined for the regions served by a given duct or VAV
box and for lighting zones. These functional areas do not
always align with logical spaces such as hallways, offices or
the cubicles assigned to a research group. BAS allows log-
ical areas to be defined for use in the query system. By de-
fault the query system treats all intersecting areas as logically
linked. If a region named $BAS Cubicle was defined, then
the query #LIGHT > $BAS Cubicle would return all light
zones that overlap with the BAS cubicle area. Spatial areas
can be easily added or modified by updating the underlaying
GIS database.



Table 2. Partial list of object tags. Tags describe the types
of primitive objects. Queries use tags and functional or
spatial relationships to find objects.

#ELEC All objects in electrical domain
#HVAC All objects in the HVAC domain
#AREA All areas in the spatial domain
#LIGHT All objects in lighting domain
#FLOOR All floors
#SEN All sensors
#ACT All actuators
#RELAY Relays
#DMP Dampers
#VLV Valves
#ELECMETER Electrical meters
#AH Air handlers

Queries are evaluated with a graph traversal algorithm.
Starting at the right-most operand, all objects matching the
tags or object names are added to the search list. Next,
we search all incoming edges or all outgoing edges based
on the operator (< or >) for objects that match the left
hand operand. Each search is preformed recursively in a
breadth-first way. Visited objects are tracked to prevent
infinite loops. Searches are limited to objects in the do-
mains of the two operands, to search across a third do-
main it must be specified explicitly. For example, to
find lights for zones served by Air Handler 1 the query
is #LIGHT > #AREA < $Air Handler 1; #AREA must be
specified explicitly to search through the spatial domain. In-
tersecting spatial areas are treated as bidirectionally linked
for the purposes of query execution.
4 Drivers

In order to provide a fuzzily-searchable query interface
for device discovery, measurement and actuation, BAS must
be able to provide a sufficiently concrete method of defining
a building that does not drastically limit the portability or
generalizability of any of its components. BAS exploits the
high-level functional similarities between buildings to define
a set of high and low-level driver interfaces that encompass
the range of possible internal components in a given build-
ing. The goal of this structure is to facilitate the adherence
of a building to a common, exposed API on top of which
portable applications can be built.

BAS driver interfaces define common APIs for high-level
objects whose functionality depends on and consists of a cer-
tain set of lower-level components, e.g. a certain type of
air handler may contain an outside air damper, a set of tem-
perature sensors, a cooling coil valve, etc, but it retains a
level of functional congruity with different types of air han-
dlers that may contain different components. The low-level
BAS driver interfaces define these fundamental components
in terms of their basic type: sensors, dampers, valves, fans
and so forth.

Each of these interfaces is then implemented by one or
more classes whose code handles the combination of device-
specific functionality to provide the logic for the interface.
The ability of the drivers to support multiple classes for a
given interface means that BAS remains extensible enough to

new VFDFAN
("AH2A.SFVFD:
INPUT REF1")

Interfaces Drivers Implementing Interface Example Instances

new OOFAN
("EX2_SS")

new TMPSEN
("AH2A_SAT")

new PRSSEN
("AH2A_SDSP")

Pressure Sensor
get_value():   current pressure in Pa

Temperature Sensor
get_value():   current temp in C

Variable Speed Fan
get_speed():              speed in %, 0 = OFF
set_speed(value):   speed in %, 0 = OFF
clear_speed()              revert to default

On/Off Fan
get_speed()                 100 = ON, 0 = OFF
set_speed(value)     > 50 ? ON else OFF
clear_speed()              revert to default

Fa
n 

<<
In

te
rfa

ce
>>

ge
t_
sp
ee
d(
)

se
t_
sp
ee
d(
va
lu
e)

cl
ea
r_
sp
ee
d(
)

Se
ns

or
 

<<
In

te
rfa

ce
>>

ge
t_
va
lu
e(
)

Node [[Abstract Class]]
add_upstream(node)
add_downstream(node)
list_methods():                                               list implemented methods
get_upstream(depth):                                   return nodes upstream
get_downstream(depth):                            return nodes downstream

Figure 3. Interfaces for lower-level devices specify meth-
ods for general equipment types to be implemented in
equipment-specific classes. Classes are instantiated with
references to the actual hardware.

integrate any custom interface for any esoterically-designed
building component – provided that the logic exposes the ex-
pected API – as well as promoting reusability and portabil-
ity. As seen in Figure 4, each of the driver implementation
classes contains custom logic that adapts the specifics of a
type of equipment to the expected interface.

For the high-level drivers, the interface specifies the ex-
pected components in terms of descriptive tags; any instance
of that driver must provide instances of the requisite low-
level driver classes to populate that instance’s functional-
ity. These descriptive tags distinguish between the functional
roles of the objects and classify them in a manner that en-
ables the query interface to discover and traverse them in
terms of their functional relationships to other objects. Tags
are predefined and documented by BAS to ensure portability.
Objects are described by lists of these tags, joined by under-
scores (see example below). Basic functionality for these
objects is provided by the Node abstract class which endows
objects with an awareness of the network graph, granting
them the ability to establish themselves in relation to objects
around them.

Once the objects for a building are fully populated and
instantiated, BAS creates the network graph for the pur-
pose of the query interface. The high-level objects use their
sets of expected lower-level objects in order to pre-construct
internal network graphs, which are incorporated into the
comprehensive graph by linking lower-level objects to each
other by calling object.add_upstream(target_object)
and object.add_downstream(target_object).
4.1 Example: Simplified Air Handler

In this simplified case, the type of air handlers found in
the BACnet-based building contain an outside air damper, a
mixed air temperature sensor, a cooling coil valve, a supply
fan and a supply air temperature sensor. In order to create an



1 #instantiate air handler object
2 ahu1 = ahu(’Air Handler 1’, {
3 ’OUT_AIR_DMP’: Damper(’SDH.PXCM-01 SDH.AH1A_OAD’),
4 ’MIX_AIR_TMP_SEN’: TmpSen(’SDH.PXCM-08 SDH.AH1A_MAT’),
5 ’COOL_VLV’: Valve(’SDH.PXCM-01 SDH.AH1A_CCV’),
6 ’SUP_FAN’: VfdFan(’SDH.PXCM-01 SDH.AH1A.SF_VFD’),
7 ’SUP_AIR_TMP_SEN’: TmpSen(’SDH.PXCM-01 SDH.AH1A_SAT’)
8 } )
9 #link air handler object into the network graph

10 ahu1[’COOL_VLV’].add_upstream(cold_water_loop[’PUMP’])
11 ahu1[’SUP_FAN’].add_downstream(vav1[’DMP’])
12 ahu1[’SUP_FAN’].add_downstream(vav2[’DMP’])
13 ...

Figure 4. Instantiating a simplified air handler

instance of this type of air handler, it is first necessary to cre-
ate instances of these expected components. Once these are
provided in the instantiation of the air handler, the particular
BAS air handler class knows how to incorporate the API for
each component into the expected logic for the general air
handler API.

BAS defines low-level driver interfaces for dampers, sen-
sors, valves and fans, and the BAS implementation for the
building contains interface-compliant classes that provide
the necessary BACnet-specific logic for reading from and
writing to the necessary points for each of these drivers. The
exact point names for each object are provided upon instan-
tiation of that object.
5 Interconnect Abstraction

The interconnect layer provides a RESTful interface that
routes sequences of read and write requests to the underly-
ing building control protocols. It addresses three main chal-
lenges in processing requests from the driver and application
levels: interfacing with different building control protocols,
handling network throughput, and maintaining a consistent
building state. By using sMAP [5] to provide this interface,
BAS is able to implicitly handle distributed setup as well as
data archiving.

A building may contain any one of a number of building
control protocols – such as BACnet, OPC, LONtalk, ALC
SOAP, and ModBus – each of which may define or provide
their own communication protocol, software library, etc. for
the purpose of reading and writing to a set of points corre-
sponding to aspects of the building. It is the job of the in-
terconnect layer to handle the implementation details to suf-
ficiently abstract the reading and writing of points for the
driver and application levels. For example, when interfac-
ing with BACnet, the interconnect layer helpfully removes
the need to know the unusual or specific numeric constants
required to correctly formulate a BACnet packet.

The devices inside buildings often communicate over a
specialized physical layer that may not be immediately com-
patible with TCP/IP. A building’s control protocol will usu-
ally provide some mechanism for communicating with these
devices, but the implied intricacies of such a mechanism are
often too complex to be accounted for at a higher level in
BAS. By handling the construction of packets and manag-
ing network throughput at the interconnect layer, the driver
layer does not require extensive knowledge of various net-
work protocols.

Furthermore, the interconnect layer handles all end-to-
end reliability on behalf of the drivers. The utility of the

Figure 5. Example of parsing an image to identify air
handlers, VAV boxes, and dampers

higher abstraction layers is made with the guarantee of a con-
sistent building state, so despite the multi-tiered indirection
between an application and its points of actuation, the end-
view of a building will be correct.
6 Autopopulation

In order to port applications between buildings, BAS must
be correctly configured for each building, requiring some
amount of work to be done to catalog or discover exactly
what devices are in the building, how they are logically and
functionally connected, and how these logical pieces affect
the spatial aspects of the building. Automating this process
is an area of ongoing work. Our initial approach is to use ex-
isting interfaces for object discovery combined with drivers
we wrote for different building components and an image
recognition technique for importing functional and spatial
relationships from existing documents.

Most building control protocols provide some method for
device discovery. This usually takes the form of providing
a list of all devices that can be read from and/or written to
over the internal network. Unfortunately, for some protocols
such as BACnet, device discovery takes the form of a whois
packet broadcast over the local subnet, meaning that in the
absence of having a machine on the building subnet, the dis-
covery method is unable to return any results. It is possible,
however, to construct packets that take into account the inter-
nal structure of the building network, and thus conduct a de-
vice discovery query remotely. We scan a given IP for valid
gateway devices and then search for internal sub-networks
by examining the error codes returned by BACnet.

Once we have a list of devices on the internal building
network, we can use the building’s naming schema to iden-
tify objects by type, name, and location. The reality is that
most building control protocols do not enforce the inclusion
of much of this metadata, leading to incomplete and some-
times inconsistent catalogs of building devices. Despite the
wide variability in the quality of existing building metadata,
BAS can automatically construct at least a partial represen-
tation of the building, drastically reducing the overhead for



initializing a building, depending on the structure of the in-
ternal network and the amount of metadata provided.

In some cases it is possible to extract data from the ex-
isting building management system to construct the func-
tional and spatial relationships. For example, the ALC We-
bCTRL [2] automation system provides a SOAP interface
that contains an internal geographically organized tree of all
the building’s devices, helpfully combining the processes of
discovery and geo-tagging.

Other representations of the building such as IFCs [11] or
EnergyPlus models [8] could be used to automatically load
building metadata. However, these are not often available.
As a fallback method we use computer vision techniques on
architectural diagrams to recognize various types of objects
on a floor plan, noting their location and relationship.

The example in Figure 5 uses only a few lines of the
OpenCV Python library to extract VAV objects from a duct-
work diagram by nature of their shape using the built-in tem-
plate matching functionality. Combining this with OCR, it
is possible to extract the geospatial coordinates, names and
functional relationship of VAVs.

7 Applications and Evaluation
The power of BAS lies in its ability to be easily adapted

from one building to another, bridging the common func-
tionality between different hardware implementations, com-
munication protocols, and building control systems. Here,
we will examine the deployment of two applications on two
buildings with different control systems, implemented with
and without BAS.

The first building is approximately 100k sq. feet and has
7 floors. It contains large open cubicle areas for graduate
students and private offices for faculty and administrators.
It also contains a cafe, auditorium and several classrooms.
It runs a Siemens control system with over 8000 available
sensor and actuator points exposed over BACnet. The second
building is approximately 75k sq. feet in size and has 6 floors
with office areas and a library area. The control system is
ALC, which supports both low-level BACnet access and a
higher-level SOAP interface, exposing over 5000 points.

7.1 Occupant HVAC Control App
The occupant HVAC control application allows occupants

to temporarily blow hot or cold air into a room. The logic is
simple. For a given room, the corresponding damper and, in
the case of a request for heating, heating element are opened
for a limited time. Then, the damper and heating defaults are
restored.

Figure 7.1 shows the implementation in Python using a
BACnet library. BACnet commands require cumbersome
low-level arguments: device name, object instance number,
property and data type; this information is not necessarily
easy to access. The application must contain an explicit
building-specific mapping of which dampers and heating
valves control each room, along with which internal BAC-
net object and value type those objects are. BACnet points
have cryptic names and do not contain any spatial aware-
ness of the building itself. This code could be additionally
augmented with consistency checking that verifies that the

1 #Using direct BACnet
2 import bacnet
3 import time
4 dampers = {
5 ’Room 444’: (’SDH.PXCM-11’,’SDH.S4-03:DMPR POS’, ’SDH.S4-03:VLV POS’),
6 ’Room 446’: (’SDH.PXCM-11’,’SDH.S4-05:DMPR POS’, ’SDH.S4-05:VLV POS’),
7 ’Room 448’: (’SDH.PXCM-11’,’SDH.S4-09:DMPR POS’, ’SDH.S4-09:VLV POS’),
8 ...,
9 }

10 def cool_room(room_number):
11 damper = dampers[room_number]
12 device = bacnet.find(name=damper[0]) #bacnet.find(’SDH.PXCM-11’)
13 object = bacnet.find(name=damper[1]) #bacnet.find(’SDH.S4-05:DMPR POS’)
14 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
15 instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
16 value=100, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)
17 time.sleep(1000)
18 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
19 instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
20 value=1, value_type=bacnet.BACNET_APPLICATION_TAG_NULL)
21
22 def warm_room(room_number):
23 damper = dampers[room_number]
24 device = bacnet.find(name=damper[0]) #bacnet.find(’SDH.PXCM-11’)
25 object = bacnet.find(name=damper[1]) #bacnet.find(’SDH.S4-05:DMPR POS’)
26 heating = bacnet.find(name=damper[2]) #bacnet.find(’SDH.S4-05:VLV POS’)
27 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
28 instance_number=heating.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
29 value=100, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)
30 time.sleep(60)
31 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
32 instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
33 value=100, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)
34 time.sleep(1000)
35 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
36 instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
37 value=1, value_type=bacnet.BACNET_APPLICATION_TAG_NULL)
38 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
39 instance_number=heating.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
40 value=1, value_type=bacnet.BACNET_APPLICATION_TAG_NULL)

Figure 6. BACnet-specific occupant controlled HVAC ap-
plication code.

1 #Using BAS
2 import appstack
3 import time
4 api = appstack.Appstack()
5
6 def cool_room(room_number):
7 vav = api(’#VAV > $%s’ % room_number)
8 vav.set_airflow(100)
9 time.sleep(1000)

10 vav.clear_airflow()
11
12 def warm_room(room_number):
13 vav = api(’#VAV > $%s’ % room_number)
14 if ’set_heat’ in vav.list_methods():
15 vav.set_heat(100)
16 time.sleep(60)
17 vav.set_airflow(100)
18 time.sleep(1000)
19 vav.clear_heat()
20 vav.clear_airflow()

Figure 7. BAS implementation of occupant HVAC con-
trols.

writes were received correctly by the appropriate devices, as
BACnet uses UDP and thus is inherently unreliable.

If this application were to be deployed to any other build-
ing, the devices and objects would have to be rewritten to
point to the new building’s BACnet IP router. The instance
numbers as well as the property, value and object types
would have to be double checked to ensure correctness, and
the point names would have to be changed.

Figure 7.1 shows the functionally equivalent application
written using BAS. The increased readability is immediately
obvious. BAS encodes spatial relationships, so finding VAVs
corresponding to a space is trivial. BAS drivers expose con-
venient methods for setting airflow and heating in a standard
way that applies to all VAVs. The application makes no ref-
erence to the specific communication protocol nor to the spe-
cific point names. This app could be ported to a completely
different building and run without further configuration of



Figure 8. Trace of the occupant HVAC control app run-
ning on one of our buildings. The heating coil and airflow
increase to maximum, rapidly warming the room.

the application itself, provided that BAS is correctly installed
on the given building. Figure 7.1 shows this application run-
ning on our building with Siemens controls. The app warms
an enclosed office area in response to an occupant request.
7.2 Ventilation Optimization App

The ventilation optimization application is based on the
observation that many buildings are over-ventilated; Califor-
nia Title 24 [4] requires 15 CFM of fresh air per person in
the building, but the fraction of fresh air taken into the build-
ing varies from 30% to 100% of the supply air depending
on the economizer (outside air damper) position. As a result,
airflow rates are often set assuming minimum fresh air in-
take. The ventilation optimization app adjusts the minimum
airflow rates for all VAV boxes in the building based on the
fraction of fresh air their corresponding air handler brings in.

It is immediately evident in the writing of this application
that some knowledge of the layout of the HVAC system is
required in order to adjust each VAV by the correct amount.
Figures 7.2 and 7.2 show this application implemented on
our Siemens and ALC buildings respectively. Note the hard-
coding of associations between VAVs and air handlers, the
cryptic point names and the control protocol specific actua-
tion code. Porting the application from one building to an-
other required a complete rewrite of the read/write logic, not
just the point names.

The same application implemented using BAS is shown
in 10. Using relative queries simplifies the code by dynami-
cally finding the corresponding economizers, VAV boxes and
dampers; thus, porting the application from our first building
to the second required no change in the actual code.
7.3 Porting BAS

In configuring BAS to run on two buildings as differ-
ent as the BACnet-based and ALC-based buildings men-
tioned above, there is a surprisingly small amount of work
to be done considering the differences between them. The
most accessible programmatic interface to the first is through
BACnet; the particular implementation allows for direct ac-
cess to many individual components within the building,
but lacks much of the location-aware metadata that is use-
ful to BAS. Conversely, the ALC-based building provides a

1 #Using direct BACnet
2 import bacnet
3 #damper setpoints for each outside air damper
4 oad_to_dmp_stpts = {
5 ’SDH.PXCM-01 SDH.AH1A_OAD’: [
6 ’SDH.PXCM-04 SDH.S1-20:CTL FLOW MIN’,
7 ’SDH.PXCM-04 SDH.S1-19:CTL FLOW MIN’,
8 ...],
9 ’SDH.PXCM-01 SDH.AH1B_OAD’: [

10 ’SDH.PXCM-11 SDH S2-04:CTL FLOW MIN’,
11 ...],
12 ’SDH.PXCM-08 SDH.AH2A_OAD’:[
13 ’SDH.PXCM-11 SDH.S4-03:CTL FLOW MIN’,
14 ...]
15 }
16 for oad in oad_to_dmp_stpts.keys():
17 device = bacnet.find(name=oad)
18 oad_airflow = bacnet.read_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
19 instance_number=device.instance_number, property=bacnet.PROP_PRESENT_VALUE)
20 for dmp in oad_to_dmp_stpts[oad]:
21 damper = bacnet.find(name=dmp)
22 old_setpoint = bacnet.read_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT, \
23 instance_number=damper.instance_number, property=bacnet.PROP_PRESENT_VALUE)
24 new_setpoint = old_setpoint / oad_airflow
25 bacnet.write_prop(device, object_type=bacnet.OBJECT_ANALOG_OUTPUT,\
26 instance_number=damper.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
27 value=new_setpoint, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)

Figure 9. Ventilation optimization app implemented on
our first building using BACnet.

1 #Using ALC SOAP
2 import suds
3 url_to_wsdl = ’http://......’
4 client = suds.client.Client(url)
5 air_handlers = {
6 ’#doe_basement/#doe_base_equipment/#doe_ah-c’: [
7 ’#doe_vav_c-2-13/air_flow/flow_tab’,
8 ’#doe_vav_c-2-14/air_flow/flow_tab’,
9 ...]

10 ’#doe_penthouse/#doe_ah-b1_ah-b2_rf-1’: [
11 ’#doe_vav_b-5-01/air_flow_b1/flow_tab’,
12 ...]
13 }
14 for ahu in air_handlers.keys():
15 oad_airflow = client.getValue(ahu+’/oa_damper’)
16 for vav in air_handlers[ahu]:
17 old_damper_airflow = client.getValue(vav+’/m269’)
18 new_damper_airflow = old_damper_airflow / oad_airflow
19 client.setValue(vav+’/m269’, new_damper_airflow)

Figure 10. Ventilation optimization app implemented in
BAS and executable on both buildings.

1 #Using BAS
2 import appstack
3 api = appstack.Appstack()
4 ah_dampers = api(’#OUT_AIR_DMP > #AH’)
5 for dmp in ah_dampers:
6 for vav in api(’#VAV < $%s’ % dmp.name):
7 vav.set_min_airflow(vav.min_fresh_air() / dmp.get_percent_open())

Figure 11. Ventilation optimization app implemented on
our second building using the ALC SOAP interface.

SOAP (Simple Object Access Protocol) interface over BAC-
net, which allows BAS to glean a considerable degree of
location-aware metadata, but does not allow as fine-grained
control over individual devices.

In practice, configuring BAS to run the application in Fig-
ure 10 above required only some adjustment of the damper
and heating valve drivers to communicate with the spe-
cific control protocol of the building in question, which was
greatly simplified by the abstractions already provided by the
interconnect layer (about 5 LOC per driver). While it could
be argued that the BACnet specific code in Figure 7.2 could
be configured to run on a different (yet still BACnet con-
trolled) building with changes on the order of 5 LOC, this
configuration would have to be done on an application-by-
application basis, whereas BAS only requires configuration
once per building. The hierarchical nature of BAS drivers
means that only low-level drivers (e.g. damper, valve, fan,
etc.) need to be ported, while high-level drivers (e.g. air
handler) generally remain unchanged.



8 Related Work
Several approaches have been proposed for organizing

building metadata. Tree structures are most commonly used
today [2, 6]. In this approach, related sensor and actuator
points are grouped hierarchically. For example, in one of our
buildings HVAC equipment is grouped by location and func-
tion: /basement/hot water plant/boiler/steam flow
and power meters are grouped by panel and breaker:
/main breaker/panel 41/floor4 lighting/real power.
Hierarchies provide a single, “precomputed” way to explore
the data. This works well for answering some queries,
e.g. “what loads are on panel 41,” but cannot handle more
complex queries, e.g. “which circuits power room 123’s
outlets and lights.”

The next approach is to use predefined classes or entity-
relationship models for common building components. In-
dustry Foundation Classes [11] specify models for struc-
tural, mechanical and electrical aspects of buildings. IFCs
are intended to describe building design and facilitate shar-
ing of information among design and construction teams.
IFC includes classes for HVAC equipment and a connectiv-
ity model for building a directed graph of objects [3]. BAS
models the active sensor and actuator components, while IFC
focuses on the design specification without linking this to the
running controls. BAS uses a similar connectivity model,
but eliminates the need for rigid predefined classes by us-
ing tags and a driver model that only requires implementing
basic read/actuate methods for each driver type.

Project Haystack [16] uses a list of tags and rules about
their use to describe building components. The tagging ap-
proach is very flexible and overcomes the rigid structure
of fixed object classes or hierarchies. However, tagging
schemes like Haystack cannot encode the full range of func-
tional and spatial relationships. Queries are limited to the re-
lationships that are manually tagged. In BAS, relationships
are queried by traversing a graph structure.

All of these efforts focus on describing building data,
while BAS crucially provides methods for actively control-
ling the building and raises the level of abstraction to allow
control to be implemented portably. We share the same vi-
sion as [13] of enabling building applications. [13] focuses
on integrating existing metadata from multiple sources and
devising a common data representation for use by applica-
tions. BAS is complementary and is focused on how ap-
plications can conveniently make use of available building
controls portably and at a higher level of abstraction (driver
API), how to make applications automatically adjust to dif-
ferent building designs (fuzzy queries and exploration) and
how to execute applications on a new building (interconnect
and runtime platform).

9 Conclusion
Modern commercial buildings contain some of largest de-

ployed sensor networks, often consisting of thousands of
sensors and actuators. This infrastructure has the potential
to enable a wealth of applications that change the way we
interact with buildings, reduce energy consumption, support
grid operation, improve reliability and maintenance.

The main challenge is to make applications portable and

easy to develop. All buildings are designed differently and
building controls are inconsistent in naming, function and
available features. Today this requires developers to have
detailed knowledge of each building’s architecture, HVAC
design, control network and hardware functionality.

BAS abstracts these details, allowing application authors
to select building components with fuzzy queries and use
standardized methods built up through a hierarchy of drivers
to read or actuate the building. BAS queries are key to porta-
bility; they allow authors to select components in terms of
functional or spatial relationships that are implicitly portable.

We implement two different control applications, a venti-
lation optimization app and an occupant temperature control
app, on two different large buildings on campus. Each app
is implemented first using the raw building control protocol
and then again using BAS. We show that the BAS code is
much shorter, easier to understand and does not change for
each building while preserving the same execution.
10 Acknowledgments

We thank Domenico Caramagno and Venzi Nikiforov for
their support in deploying our system and their invaluable
insight into building operation. We thank Stephen Dawson-
Haggerty for many great discussions on the design and use
of BAS. We also thank the reviewers for their helpful com-
ments. This work is supported in part by the National
Science Foundation under grants CPS-0932209 and CPS-
0931843.
11 References
[1] ASHRAE. ANSI/ASHRAE standard 135-1995, BACnet, 1995.
[2] AUTOMATEDLOGIC. ALC WebCTRL, 2012.
[3] BAZJANAC, V., FORESTER, J., HAVES, P., SUCIC, D., AND XU, P.

HVAC component data modeling using industry foundation classes.
In System Simulation in Buildings (2002).

[4] CA ENERGY COMMISSION. California’s energy efficiency standards
for residential and nonresidential buildings, 2008.

[5] DAWSON-HAGGERTY, S., JIANG, X., TOLLE, G., ORTIZ, J., AND
CULLER, D. smap: a simple measurement and actuation profile for
physical information. In SenSys ’10 (2010).

[6] DICKERSON, R., LU, J., LU, J., AND WHITEHOUSE, K. Stream
feeds: an abstraction for the world wide sensor web. In IOT’08 (2008).

[7] ECHELON CORPORATION. LonTalk protocol specification, 1994.
[8] EERE. EnergyPlus. http://energyplus.gov, 1998.
[9] ENERGY INFORMATION ADMINISTRATION. Commercial buildings

energy consumption survey, 1999.
[10] ERICKSON, V. L., CARREIRA-PERPIN, M. ., AND E.CERPA, A.

OBSERVE: occupancy-based system for efficient reduction of hvac
energy. In IPSN’11 (2011).

[11] ISO. Industry Foundation Classes, Release 2x, 2005.
[12] KRIOUKOV, A., DAWSON-HAGGERTY, S., LEE, L., REHMANE, O.,

AND CULLER, D. A living laboratory study in personalized auto-
mated lighting controls. In BuildSys’11 (2011).

[13] LIU, X., AKINCI, B., GARRETT, J. H., AND BERGES, M. Require-
ments for a formal approach to represent information exchange re-
quirements of a self-managing framework for HVAC systems. In IC-
CCBE (July 2012).

[14] OPC TASK FORCE. OPC common definitions and interfaces, 1998.
[15] PostGIS. http://www.postgis.org/.
[16] Project haystack. http://project-haystack.org/.
[17] SCHEIN, J., BUSHBY, S. T., CASTRO, N. S., AND HOUSE, J. M.

A rule-based fault detection method for air handling units. In Energy
and Buildings (2006).

[18] U.S. DEPARTMENT OF ENERGY. 2011 buildings energy data book,
2012.


