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Abstract

Buildings account for 32% of the energy use worldwide. A new regime of exciting

new “applications” that span a distributed fabric of sensors, actuators and humans

have emerged to improve building energy efficiency and operations management.

These applications leverage the technological advances in embedded sensing, pro-

cessing, networking and methods by which they can be coupled with supervisory

control and data acquisition systems deployed in modern buildings and with users

on mobile wireless platforms. There are, however, several technical challenges

before such a vision of smart building applications and cyber-physical systems

can be realized. The sensory data from and to the distributed systems end-points

need significant curation before it can be used meaningfully. This is largely a man-

ual, cost-prohibitive task and hence such solutions rarely experience widespread

adoption due to the lack of a common descriptive schema.

Recent attempts have sought to address this through data standards and meta-

data schemata but fall short in capturing the richness of relationships required by

applications. This paper describes Brick, a uniform metadata schema for repre-

senting buildings that builds upon recent advances in the area. Our schema defines

a concrete ontology for sensors, subsystems and relationships among them, which

enables portable applications. We demonstrate the completeness and effectiveness

of Brick by using it to represent the entire vendor-specific sensor metadata of six

diverse buildings across different campuses, comprising 17,700 data points, and

running eight unmodified energy efficiency applications on these buildings.
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1. Introduction

Buildings account for 32% of the energy and 51% of the electricity demand

worldwide as of 2010 [1]. Improving the energy efficiency of buildings can re-

duce energy demand by up to 90%, will help reduce operational cost, curb carbon

emissions, improve indoor air quality, and keep occupants healthy and produc-

tive [1]. Driven by the availability of inexpensive embedded sensing and network-

ing devices, modern buildings are being integrated with a variety of networked

sensors and equipment for centralized operation and management. Technolog-

ical innovations in what is now called the “Internet of Things” (IoT) have led

to connected lights, power meters, occupancy sensors and electrical appliances

that are capable of interfacing with the underlying SCADA (supervisory control

and data acquisition) systems used in building automation. These technological

improvements hold the promise of significant advances in energy efficient opera-

tions [1, 2, 3]. For example, research shows that up to 40% of HVAC energy use

can be reduced by mitigating faults in these systems [4] and there are hundreds

of Automated Fault Detection and Diagnosis (AFDD) algorithms available in the

literature that could be used to identify these faults [5]. As of 2012, 14% of the

commercial buildings in the U.S. had deployed Building Management Systems

(BMS) to manage data collection and remote actuation of the connected building

infrastructure [6]. Newer buildings are equipped with BMS by design, and many

older buildings are being retrofitted with networked systems for improved effi-

ciency. Furthermore, integration with the Internet presents an exciting possibility

for value-creation through a network of buildings that can actively participate in

smart grids. Leveraging these technologies a number of innovative software ap-

plications have emerged that pose to transform building energy dynamics such as

model predictive control [7], automated demand response [8], occupancy based

control [9], energy apportionment [10], fault diagnosis [11], participatory feed-

back [12], and architectural design iterations [13].

These emerging applications present an excellent opportunity for creating an

“app store” like those available for smartphones to provide new capabilities to

building operators and occupants alike. In this scenario, an energy solution can

be deployed across multitude of buildings that support the requisite infrastructure

with minimal configuration. Yet, this vision is far from realization - most de-

ployments require significant investments and building specific domain expertise.
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Even the most modern BMS present a cacophony of data and information flows

that vary by buildings, vendors and across locations. Unlike the mobile phone

landscape, there is no standardized operating system or hardware abstraction layer

for building applications.

The lack of a common data representation prevents interoperability between

buildings and limits deployment of energy applications as developers need to map

the heterogeneous data of each building to a common format. This problem has

been recognized for a while now. NIST in 2004 estimated that the U.S. building

industry lost $15.8 billion annually due to lack of interoperability standards [14].

Attempts have been made to address this problem. Building Information Mod-

els (BIM) [15] were introduced to address the interoperability concerns both for

the design and operation of buildings. Schemata such as the Industry Foundation

Classes (IFC) [16], and more recently the Green Building XML (gbXML) [17],

are useful but they remain largely oriented towards design and construction ef-

forts. As a consequence, only limited support is provided for BMS operations,

energy management and data analysis. More recently, several other schemata (e.g.

Project Haystack [18], SAREF [19]) have emerged to highlight the importance

and use of building operations metadata, i.e., the information that captures the

properties of different equipment, sensors and controls used in buildings. Brick

builds upon these efforts to devise a practical schema that demonstrates use of

several energy applications in a number of buildings across the U.S. and Europe.

The technical challenge here is to design a schema that can, at the very least,

capture the information that the building engineers and facilities managers chose

to put into real-life deployments across a diverse set of buildings. The schema

needs to be expressive enough to capture the contextual information for building

subsystems, the sensors installed and the data they generate so that canonical en-

ergy applications such as fault detection/diagnosis [20] and demand response [21]

can be easily developed and deployed. Recent work has shown that the existing

schemata fall short in capturing the important relationships and concepts neces-

sary for applications for even one real building BMS [22].

Designing a comprehensive schema for the emerging IoT universe in order to

run any conceivable application in any context is a difficult task but unnecessary

for the current scope of creating a usable platform spanning commercial buildings.

Therefore, we focus on creating an information exchange platform focused on

commercial buildings where interactions among devices and building spaces are

core to sophisticated applications. In developing such a platform, we are guided

by the sensors, attributes and relationships that have been shown to be useful in

the published literature with a view towards composability and extensibility. In
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designing Brick, we ask the following important questions and seek answers with

demonstrated effectiveness:

• Completeness: Can Brick represent all the metadata information (such as

a sensor’s location, type, etc.) contained in a building’s BMS?

• Expressiveness: Can Brick capture all important relationships between

building entities that are (a) explicitly or implicitly mentioned in a build-

ing’s BMS, and (b) expressed in canonical energy applications in published

academic literature?

• Usability: Can Brick represent the information in a way that is easy to use

for both the domain expert and the application developer unambiguously?

Can the schema support automation with machine readable data formats and

querying tools? Can it be extended for new concepts in a unified way?

Due to the highly diverse and changing nature of buildings across the world,

these questions can only be answered with a representative sample of current

buildings, and it is important for our schema to remain extensible and open in

order to accommodate the evolving BMS landscape. Thus, our design of Brick

is grounded by the information from BMS across six buildings spread across two

continents, comprising more than 630,000 sq-ft of floor space. The information

in a BMS is characterized by data points that correspond to values reported by

sensors, configuration parameters such as a temperature setpoint and status of

equipment. Brick design is based on more than 17,700 data points supplied by

BMS from six different vendors, and have vastly varying subsystems and sen-

sors. We further refine our design requirements using eight canonical energy ap-

plications that require integrated information across commonly isolated building

subsystems: air conditioning, heating, lighting, spatial and power infrastructure.

We demonstrate that 98% of BMS data points across our six buildings can be

mapped to Brick, and our eight applications can easily query the mapped building

instances for required information. We open source the Brick schema files, the

BMS metadata from our buildings, the application queries that run on top of Brick

and tutorials on how to map existing building metadata to Brick. Brick schema

and documentation can be found at http://brickschema.org/.

This paper is based on our earlier work [23] where we presented the initial

version of the Brick schema and how it modeled building equipment, locations,

sensors and the relationship between them. This paper extends the work by pre-

senting methodologies actually needed for deploying such metadata schema in

real systems. First, we show methodologies to instantiate Brick in large scale

by exploiting existing information sources including raw point names in building
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management systems and other schemata as Project Haystack and IFC to ease the

adoption of Brick. Second, we propose an an architecture for the integration of

Brick with actual building operating systems as well as two concrete open-source

implementations, XBOS [24] and BuildingDepot 3.0 [25]. Third, We validate the

extensibility of our model by our community contribution model and the integra-

tions with other schemata for diverse aspects beyond Brick’s original coverage.

2. Background

2.1. Building Applications and Energy Efficiency
U.S. Department of Energy reports that the commercial sector, mostly ac-

counted by its buildings, consumed 18% of the primary energy and 47% of the

electricity in the country in 2017 [26] and that, on average, 30% of this energy

is wasted [27]. By taking advantage of the proliferation of sensing and con-

trol devices in bulidings, many approaches have been developed to reduce this

waste, ranging from naïve occupancy-driven control [28], AFDD [11] to model-

predictive control [29]. Because these approaches are, for the most part, algo-

rithms and heuristics that can be implemented in software, we refer to them as

building applications. For example, Y. Agarwal et al. developed a building appli-

cation and showed that turning on VAVs of one floor only when they are needed re-

duces 9.54% to 15.73% electrical and 7.59% to 12.85% thermal energy consump-

tion of the entire four-story building with minimal hardware installations [28]. Its

obvious energy savings would have a large impact on the entire country if it were

to be widely deployed. For instance, simply extrapolating the savings accrued

in the target building to the 20 buildings in the campus where the building is lo-

cated would result in energy savings of 33978 MBTU thermal energy annually.

Similarly, faults also account for 4-18% of the entire energy consumption in com-

mercial buildings [30], and up to 40% of HVAC energy use [4], which various

fault diagnostic algorithms can detect to mitigate.

However, the cost is the largest barrier to adopt energy efficient applications [31].

As of 2012, 86% of the buildings in U.S. have no BMS that controls build-

ings in a centralized way [6]. Adoption of a naive BMS takes from 2.50 USD

to 7.00 USD per square foot as of 2016, which sums up to 250,000 USD for

a 100,000 square feet building at least [32]. In a case study of retrofitting a

20,500 square feet medium-sized building in 2010, the labor cost for designing

and engineering the system takes the largest portion with 35% other than any other

set of devices just to enable scheduling air conditioning [33]. Even the other 14%
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with BMSes require significant engineering effort even without adding new hard-

wares. BMSes are also maintained by vendors who require to pay a significant

amount of the bill to upgrade and adopt new applications. Thus, the report lists

six architectural requirements for BMSes, among which five are interoperability,

scalability, deployment, open, and plug-n-play for the large deployment of energy

efficiency applications [33]. These are closely related to metadata organization in

buildings.

2.2. Meatdata in Buildings
Many large commercial buildings today have monitoring and actuation sen-

sor networks that are accessed through the BMS or through SCADA (Supervisory

Control and Data Acquisition) systems. BMS captures the building infrastruc-

ture information in terms of different subsystems such as lighting, electric power,

water, and heating, ventilation and air conditioning (HVAC). BMS describes the

equipment in each domain, how they connect with each other, monitor their op-

eration through networked sensors and actuate them through remote commands.

BMSes typically have programmable interfaces for higher level control, store his-

torical data and provide visualization. We refer to each of the sensor or control

point in the BMS as a “data point”, and their metadata consists of “labels” that

describe the many aspects of a data point, such as its function, type, location and

relationships to different subsystems. Labels in some buildings are simply terse

alphanumeric representations, while in other buildings they are long-form and hu-

man readable. Typically, these labels are attached to various user interfaces of the

specific BMS/SCADA systems, so that engineers and operators can check status

and plot trends.

Since BMS metadata information is not standardized nor designed to be ma-

chine understandable, “label” naming is heterogeneous and inconsistent across

commercial vendors, between the buildings set up by the same vendor, and even

within a building. For example, a Zone Temperature Sensor may be referred to

as a ZNT, Zone Temperature, or even by an opaque numerical identifier.

Even with programmatic access to labels, data, and other descriptive information,

scaling analytics or intelligent control across commercial buildings remains chal-

lenging. This is likely to be the case as long as the basic steps in interpreting the

metadata involve labor intensive efforts by trained professionals with deep knowl-

edge of building operations and specifics of each building.

Brick directly addresses this problem of building-specific labeling by compil-

ing a normalized list of domain terms that we refer to as our vocabulary and devis-

ing canonical relationships that capture dependencies and connections in and be-
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Figure 1: A simple example building that highlights the components to be modeled in a building

schema.

tween building subsystems. Brick describes a building in a machine readable for-

mat to enable programmatic exploration of different facets of a building. Hence,

building managers can represent diverse set of BMS information using Brick, and

applications developed based on the Brick schema can be directly deployed on

those buildings.

2.3. An Example Model Building
We start with a hypothetical model building to understand the requirements

of a uniform building data representation, outlining the current state of the art.

Figure 1 shows the major components of two building subsystems that are com-

monly found in a modern BMS: HVAC system and lighting system. In the HVAC

system, an Air Handler Unit (AHU) supplies conditioned air to a Variable Air

Volume Box (VAV), which modulates the air provided to an HVAC Zone consist-

ing of two rooms. The HVAC Zone is a portion of the building that maintains a

uniform temperature and uses a thermostat with a temperature and CO2 sensor for

feedback. The luminaire driver in the building only controls the luminaire in the

Lighting Zone of Room 101. The lighting system for Room 102 is omitted for

readability. Lighting Zones may or may not be overlapped with HVAC Zones as

they are defined by different subsystems.
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At the very minimum, a schema should be able to model the components il-

lustrated in Figure 1 as well as their relevant sensors (e.g. temperature sensor) and

their related control parameters. The data points have diverse relationships with

different subsystems such as HVAC, lighting, water. The subsystems has equip-

ment that has complex relationships with each other. For example, the AHU in an

HVAC system can consist of equipment such as fans, cooling coils, humidifiers,

valves and dampers. Each component could have further types; for example, fans

could be of type supply fan, return fan or exhaust fan, and each fan would have its

associated sensors measuring speed, air flow and power consumption.

2.4. Current State of the Art
2.4.1. Project Haystack

Project Haystack [18] aims to address heterogeneity in buildings using tags
to label different entities, and is the current de facto standard. Using Haystack,

the temperature sensor in Figure 1 is associated with the tags: [zone, temp,
sensor]. Tags provide a flexible and scalable framework for annotating meta-

data to building data points. Haystack defines a vocabulary of tags describing

building equipment, weather, units and data types. However, the current set of

tags lacks or does not fully describe key aspects of buildings such as spatial ele-

ments, lighting equipment and electrical subsystems [22].

While deficiency of tags can be addressed by future updates, a subsequent

challenge is that use of tags can be ambiguous and inhibit application portability.

For example, a user may annotate a temperature sensor as [zone, temp] and

omit sensor. A simple query searching for list of all sensors will not work

with this annotation. We cannot enforce the correct grouping of tags to annotate

the entities, and hence, users will invariably create multiple variations for the same

entity. Therefore, Haystack earns the flexibility of use at the expense of ambiguity

in tagging scheme.

Furthermore, Haystack relationships lack the expressive power required of an

effective building metadata schema. Haystack represents relationships using a

ref tag, which is enough to associate two pieces of equipment, but cannot express

the nature of that association. For example, a VAV may have an ahuRef tag with

a value of its parent AHU and a equipRef tag with the value of a supply air

flow sensor. The equipRef tag does not capture whether the supply air flow

sensor occurs before or after the VAV in the HVAC system. Further, Haystack

does not model “reverse” tags, which makes it difficult to enumerate sequences of

equipment.
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Project Haystack defines a REST API and a filtering query language 1. The

query language provides basic mechanisms for identifying timeseries points using

the associated tags, but does not clearly define a way of traversing ref tags for

the purpose of exploring the structure of a Haystack model. At the time of writing,

there are no open source server implementations available.

Haystack Tagging Ontology (HTO) [34] maps the Haystack tags to an on-

tology, with each tag corresponding to an ontology class. Thus, HTO is able to

combine the flexibility of tags and the formal modeling of ontologies to define

essential BMS metadata and the relationships between entities. However, HTO

confines the ontology to the defined tags, and the building entities which are a

collection of tags (e.g. zone temperature sensor) are not modeled. HTO also does

not provide a way to compose complex subsystems in a building and relies on

Haystack tagging for mapping raw metadata to the ontology. Brick follows a sim-

ilar methodology to combine tags and semantic models, but overcomes HTO’s

limitations with a vocabulary based approach. Thus, Brick provides a direct map-

ping to the data points and metadata exposed in a BMS and an enriched ontology

that can be queried with ontology tools.

2.4.2. Industrial Foundation Classes
IFC [16] is a standardized Building Information Model (BIM) that developed

from the need to have a common exchange model for 3D architectural drawings

needed for a building’s construction. IFC is good at capturing space-related in-

formation such as floors, rooms and zones, but also exhaustively describes the

mechanical composition of building subsystems: not just AHUs and VAVs, but

also ducts, flanges and other mechanical components not directly measurable or

controllable.

IFC lacks much of the vocabulary for describing the necessary subcomponents

needed for building operation. Recent versions of the IFC standard include refer-

ences to generic sensor types (IfcSensorTypeEnum) which can be associated

with the spaces the sensor covers. However, the IFC standard does not include

explicit mechanisms for describing the functional role of sensors, such as whether

a temperature sensor measures supply, return or exhaust air. There is also no

common way of adding new vocabularies compliant to existing ones. The IFX

2x2 schema also contains descriptors for building controllers2, which describe at

1http://project-haystack.org/doc/Ops
2http://www.buildingsmart-tech.org/ifc/IFC2x4/rc2/html/schema/

ifcbuildingcontrolsdomain/content.htm
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a high level the existence of alarms, events and schedules.

2.4.3. Semantic Web and Ontologies
Semantic Web is a framework promoting common data formats, exchange pro-

tocols and vocabularies with which machines can process contents’ meanings

without human interruptions on the Web. Its relevant standards include RDF,

SPARQL, Turtle, etc. [35] It was originally advocated for annotating the Web

documents [36], and since then multiple domains have adopted it such as biol-

ogy [37], IoT [38], and energy management [39] to control the complexity of the

domain information.

In Semantic Web, ontologies define formal naming of entities and their prop-

erties. Ontology is formally defined as “an explicit specification of a conceptual-

ization [40]” and often represented as controlled vocabularies in a directed graph

where each triple of a head node, an edge, and a tail node expresses subject-

predicate-object. Different systems can refer an ontology as the shared meanings

in a target domain and they can interpret each other’s contents aligned to the on-

tology unambiguously, which is the goal of metadata schemata.

A number of ontologies have been proposed for smart homes and buildings.

Most of these ontologies focus on realizing specific applications like controlling

things [41], energy management [42], or automated design and operation [43].

Also, ontology representations of IFC [44] and Haystack [34] exist. Daniele

et al. [19] combined these ontology modeling efforts in collaboration with in-

dustry to create a simple but unified model called Smart Appliances REFerence

(SAREF). They identify 20 recurring concepts in homes and buildings across

these ontologies, and lay out the steps to convert SAREF to a custom ontology.

These common concepts, however, do not effectively cover the diversity of de-

vices and equipment in buildings [22] because their goal was to capture generic

sensor and smart devices rather than building operations where domain-specific

information is required. Brick adopts similar design principles as SAREF, but

our vocabulary and concepts are based on ground truth BMS deployments and

representative smart building applications and systems.

The BOnSAI [45] smart building ontology describes the functionality of sen-

sors, actuators and appliances as well as how they interact and effect their physical

environment. However, they fail to capture the interactions and relationships be-

tween the sensors and other building assets. Hence, it lacks a system-level view

of the building infrastructure necessary for many applications [22]. Further, the

vocabulary does not describe the mechanical or functional compositions of critical

building subsystems like HVAC and lighting.
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Figure 2: Comparison of different schemata for buildings [22]. The paper used 89 applications

(apps) and three buildings to evaluate IFC, SAREF and Haystack. * We show Brick’s result for

eight representative apps from each of the eight categories of the 89 apps and six buildings we

described in this paper. Two of the buildings are the same as that used by Bhattacharya et al.

2.4.4. Ontologies and Energy Management
Energy management systems commonly consist of heterogeneous systems

where a standardized way of retrieving and processing complex information is

much desired. Tahir et al. present an ontology and actual system supporting deci-

sion makers to emulate various electricity generation mixes scenarios [46]. Even

though the ontology was not fully evaluated, it shows an importance of having a

good schema for applications and the suitability of ontologies as a meta model.

Eco-industrial park is a community of manufacturing and service businesses shar-

ing the environment to improve productivity in synergy. It is another good exam-

ple demanding cooperations of heterogeneous systems, which in turn increases

the complexity of the required information [39] They extend a couple of existing

ontologies for processes and industrial symbiosis with domain vocabularies and

necessary relationships for their energy applications. However, none of the exist-

ing work in energy management has shown the complete evaluation on the real

systems and the extensibility as we present in this paper.
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2.4.5. Analysis of Existing Schemata
Bhattacharya et al. [22] performed a comparison of IFC, SAREF, and Project

Haystack. The paper uses 89 building applications among eight categories pub-

lished in the literature as a baseline to compare different schemata and shows that

relationships between different pieces of information are essential to enable inter-

operability and portability of building applications over three buildings. The paper

compares the capabilities of Haystack [18], IFC [16] and SAREF [19]. They use

three metrics to measure the effectiveness of a schema: (i) the ability to completely

map BMS metadata from three existing buildings to the schema, (ii) ability of the

schema to capture the relationships required by applications, and (iii) the flexi-

bility of the schema to deal with uncertainty as well as their extensibility to new

concepts. Figure 2 presents the comparison across Haystack, IFC, SAREF and

Brick for metrics (i) and (ii). We evaluated Brick based on eight representative

applications and two of the three buildings used by Bhattacharya et al. Among

the three existing schemata, Haystack shows the best vocabulary coverage as it

is a tag-based model where tags can be arbitrarily combined. IFC is the most

complete in describing application relationships as its model captures the build-

ing subsystems and the dependencies between them. SAREF scored the lowest

for both metrics because it models the common concepts across different mod-

els and systems instead of comprehensively modeling buildings. In comparison,

Brick has complete coverage of both vocabularies and application requirements.

Brick builds upon these works in several ways to achieve both extensibility

and expressibility. We utilize the tagging concept of Haystack and extend it with

mechanisms to model relationships and entities. We use the location concepts

from IFC. We use a semantic representation to utilize its flexibility and extensibil-

ity properties. The semantics allows us to formalize, restrict, and verify the usage

of tags, entities, and relationships.

This paper is an extension of our BuildSys 2016 conference paper [23], cov-

ering several significant additions. Specifically, in this manuscript:

• We have updated the Brick schema based on lessons learned and feedback

from the community. We have incorporated modeling of resources such as

air, water, gas in the schema. We have introduced representation of control

sequences of building subsystems in Brick. These capture the dependencies

such as how a sensor value is used to adjust the speed of a fan or a position

of a valve.

• We present how Brick can be incorporated into a BMS. The Brick model

of a building serves to bind contextualized physical resources with logical
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resources such as API endpoints, timeseries streams, controllers and other

processes. Specifically, we examine how Brick has been integrated into two

academic BMS: XBOS [24] and BuildingDepot [25].

• We describe a general methodology for handling BMS point names, Haystack

models and IFC models, which all contain entities and relationships that can

be translated to the Brick schema with varying degrees of automation. We

have developed converters that automatically maps Haystack and IFC build-

ing models to a Brick building model. We demonstrate their operation on

generating Brick models for three buildings.

• We describe our extensibility and collaboration model for Brick. We fol-

low an open source model and have created a framework for discussions,

feedback and iterative improvements to the Brick schema. It is our hope to

create a community of Brick users to help Brick evolve to meet the needs

of application developers, building managers and occupants. We also show

integrations with other existing ontologies to augment Brick’s functionality

without losing the integrity of each model.

3. Schema Design

3.1. Design Principles
Brick’s design focuses on data points, their metadata found in real building

deployments and requirements defined by end use applications for operations and

managements. Brick is separated into a core ontology defining the fundamental

concepts and their relationships as discussed below and a domain specific taxon-

omy expanding the building specific concepts. This allows users to extend new

concepts as well as the taxonomy with the concepts. We obtain ground truth infor-

mation from six diverse buildings across the US and Europe, which have 17,700

data points and five different vendors in total (Table 4). We pick eight represen-

tative application categories from the list of smart building applications compiled

by Bhattacharya et al. [22], and formulate metadata queries for these applications

to drive the basic requirements of Brick as well as evaluate how well our build-

ing metadata can be mapped to Brick. Section 7 contains our findings for the six

buildings.We use existing standards in ontology development as Turtle [47] for

data formatting and SPARQL [48] for querying. Users can exploit existing tools

such as ontology visualization tools and querying engines.

Brick is distinguished from the other building schemata as follows:

• Completeness: The current version of Brick covers the 98% of the vocab-

ularies found in six buildings in different countries. (Section 7)
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• Vocabulary Extensibility: The structure of Tags/TagSets allow easy exten-

sions of TagSets for newly discovered domains and devices while allowing

inferences of the unknown TagSets with Tags. (Section 3.2)

• Usability: Brick represents an entity as a whole instead of annotating it. It

promotes consistent usages by different actors. Furthermore, its hierarchi-

cal TagSets structure allows user queries more generally applicable across

different systems. (Section 3.2 and 3.3)

• Expressiveness: Brick standardizes canonical and usable relationships, which

can be easily extended with further specifications. SPARQL facilitates all

the possible combinations of the relationships required by queries of the

eights application categories in the literature. (Section 3.4 and 6)

• Schema Interoperability: Using RDF enables straightforward integration

of Brick with other ontologies targeting different domains or aspects. (Sec-

tion 11)

3.2. Tags and Tagsets
We borrow the concept of tags from Project Haystack [18] (Section 2.4) to

preserve the flexibility and ease of use of annotating metadata. We enrich the

tags with an underlying ontology that crystallizes the concepts defined by the tags

and provides a framework to create the hierarchies, relationships and properties

essential for describing building metadata. With an ontology, we can analyze the

metadata using standard tools and place restrictions to prohibit arbitrary tag com-

binations or relationships. For example, we can restrict the units of temperature

sensors to Fahrenheit and Celsius or prevent sensor and setpoint from occurring

together in a tags combination for a data point. An ontology also enables prop-

erty inheritance in the hierarchy. A subconcept of a concept preserves the original

characteristics with more specifications.

We introduce the concept of a tagset that groups together relevant tags to repre-

sent an entity. With Haystack and related tagging ontologies [34], an entity such as

Zone_Temperature_Sensor from Figure 1 is defined by its individual tags,

so its properties and relationships with other entities can only be specified at the

tag level. A user should assume that the other users would have exactly used zone,

temperature, and sensor for annotating the sensor to look for zone temperature

sensors. Thus, the way of annotating the same type of sensors in tagging scheme

may differ across different buildings. On the contrary, with tagsets based on tags,

we have a cohesive concept of a Zone_Temperature_Sensor that can be

consistently used to represent actual instances of zone temperature sensor. We can

further provide its semantics as the temperature is maintained between the zone’s
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Figure 3: Information concepts in Brick and their relationship to a data point.

Cooling_Setpoint and Heating_Setpoint. The concept of tagsets

works well with an ontology class hierarchy - a Zone_Temperature_Sensor
is a subclass of a generic temperature_sensor, and will automatically in-

herit all its properties. Further, we avoid use of complex tags such as the

chilledWaterCool and hotWaterReheat tags in Haystack. The vocabu-

lary of Brick is defined by its list of tagsets.

3.3. Class Hierarchies
We define several high level concepts that provide the scaffolding for Brick’s

class hierarchy. As the central emphasis of our design is on representing points in

the BMS, we introduce Point as a class, with subclasses defining specific types of

points: Sensor, Setpoint, Command, Status, Alarm. Each point can have several

relationships that relate the data point to other classes such as its location or equip-

ment it belongs to. Bhattacharya et al. [22] recognize that building metadata has

several dimensions, which we carry forward into the design of Brick. We define

three dimensions as high level classes to which a Point can be related to: Location,

Equipment and Resource (Figure 3). We define each category as follows:

• Point: Points are physical or virtual entities that generate timeseries data.

Physical points include actual sensors and setpoints in a building, whereas

virtual points encompass synthetic data streams that are the result of some
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Figure 4: A subset of the Brick class hierarchy

process which may operate on other timeseries data, e.g. average floor tem-

perature sensor.

• Equipment: Physical devices designed for specific tasks controlled by points

belonging to it. E.g., light, fan, AHU.

• Location: Areas in buildings with various granularities. E.g. room, floor.

• Resource: Physical resource or materials that are controlled by equipment

and measured by points. An AHU controls resources such as water and air,

to provide conditioned air to its terminal units.

We can expand these concepts in future versions to expand the metadata covered

by Brick (e.g. Network). Each concept has a class hierarchy to concretely identify

each entity in the building. For example, the Equipment class has subclasses

HVAC, Lighting and Power, each of which have their own subclasses. Figure 4

showcases a sample of Brick’s class hierarchy.

It is common in a domain to use multiple terminologies for the same en-

tity. For example, in HVAC systems, Supply_Air_Temperature and

Discharge_Air_Temperature are used interchangeably. We identify these

synonyms from our ground truth buildings, and mark the corresponding tagsets as

being equivalent classes in Brick. Note that the class hierarchy does not strictly

follow a tree structure, and we use multiple inheritance when appropriate. For

example, a desk lamp can be a subclass of both the lighting system and office

appliance classes.
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3.4. Fundamental Relationships
Relationships connect the different entities in the building and are essential

to providing adequate context for many applications. For instance, to diagnose

a VAV, a fault detection application running on our example building (Figure 1)

needs to know the room to which the VAV supplies air, the temperature sensor

located in the room, other operational data points in the VAV, and the AHU that

provides air to it. However, Bhattacharya et al. establish that current industrial

standards lack the ability to sufficiently describe all the relationships required for

modern applications [22].

We construct essential relationships by pulling a representative example from

each of the eight common application dimensions identified by Bhattacharya et

al. [22] as summarized in Table 2. The categories of quintessential relationships

we extract from the applications are:

• Taxonomy: what class or classes of things define an entity

• Location: which building, floor and room an entity is in, but also where in

the room it is

• Equipment Connections: what equipment an entity is connected to, and

how it is connected

• Equipment Composition: what equipment an entity is a part of, or what

equipment is a part of it

• Point Connections: what points affect the behavior of other points

• Monitoring: what measures the entity or what it measures

Portability and orthogonality are two primary concerns in designing the set of

relationships.When describing or reasoning about a building, the set of possible

relationships between any two entities should be small enough and well-defined

such that the correct relationship should be obvious. This orthogonality reduces

the risk of inconsistency across buildings. Taken to its extreme, orthogonality in-

forms a set of relationships that are specific and non-redundant, which can lead to

overfitting the set of relationships for a particular building or subsystem. To sup-

port the goal of designing a unified metadata schema across many buildings, these

relationships must also be sufficiently generic to be portable to many buildings.

Resolving these two tensions leads to the set of relationships listed in Table 1.

The specific entities and relationships each application category requires are listed

in Table 2. We provide relationships together with their inverse relationships so

that users can express them in any direction they prefer. SPARQL queries can

accommodate both directions to be compatible with any choices of inverse rela-

tionships. The left side of Endpoints column defines the possible subjects and the
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Relationship (Inverse) Definition Endpoints

isLocationOf (hasLocation) A physically encapsulates B
Loc. / Point

Loc. / Equip.

controls (isControlledBy) A determines or affects the in-

ternal state of B
Point / Point

hasPart (isPartOf) A has some component or part

B (typically mechanical)

Equip. / Sensor

Equip. / Equip.

Loc. / Loc.

hasPoint (isPointOf) A is measured by or is other-

wise represented by point B

Equip. / Point

Loc. / Point

Resource / Point

feeds (isFedBy) A “flows” or is connected to B
Equip. / Location

Equip. / Equip.

Table 1: List of the Brick relationships and their definitions. All definitions follow the form A
<relationship> B, where relationship is the first one listed, not the inverse. All Brick

relationships are asymmetric, and transitive where marked. If a relationship → is transitive, then

if A → B and B → C, then A → C is a valid relation. Asymmetric simply means that if A → B,

then B → A is invalid.

right side defines the possible objects that the relationship can have, which can

provide a guideline for users not to improperly use them. The isPartOf rela-

tionship captures the compositions among the entities in the building. For exam-

ple, a room isPartOf a floor and a return fan isPartOf an AHU. The feeds
relationship captures the different flows between entities such as equipment or lo-

cations in the building, such as the flow of air from AHU to VAV, the flow of

water from a tank to a tap, or the flow of electricity from a circuit panel to an

outlet. Each of these relationships can have sub-properties. For instance, feeds
can be extended to feedsAirTo, feedsWaterTo, etc. Figure 5 shows the

relationships for a subset of the example building in Figure 1.

Brick uses the possible subjects/objects defined in Endpoints column of Table

1 as a guideline when users add relationships. Using ontology property restric-

tions, we provide rules for certain properties to have precise subjects and objects.

For instance, the object of hasPointmust be an instance of a class in the Point
hierarchy. Likewise, the subject of isLocationOf must be an instance of a

class in the Location hierarchy. These can be exploited by a user interface to

guide users while tagging raw metadata or while establishing relationships be-

tween entities. We define these restrictions as a set of guidelines for Brick model

developers to aid in keeping Brick usage consistent between building models.
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Figure 5: Brick classes and relationships for a subset of the example building in Figure 1.

3.5. Control Sequences
A control sequence is the logic determining an equipment’s behavior. Select

variables of such logic are exposed as points in building systems. Some points’

values are measurements of physical properties, some are results of calculations

and others are configuration parameters used to control physical devices. The flow

of these control signals is key for understanding buildings operations. Users rely

on this to interpret values (e.g., is Air_Flow_Setpoint’s value correct given

Zone_Temperature_Sensor?) or to properly control equipment (e.g., what

point should I change to achieve certain temperature in this room?).

Representations of control logic vary wildly between buildings. In many older

buildings, control logic is embedded in physical controllers distributed throughout

a building. Some vendors will provide visualization tools to represent their pro-

prietary control logic, and others use proprietary programming languages. Some

compelling representations of control logic include Simulink Simscape and Mod-

elica. Simulink Simscape [49] provides multi-domains simulation of exact control

logic with mathematical models, but is designed for simulations rather than for in-

tegrating with real physical systems. Modelica [50] is an object-oriented language

and execution environment for modular simulations and has current development

efforts focusing on building control and simulation [51]. These software, how-

ever, are only used in simulation and not designed for BMS operation. MLE+ [52]

and BCVTB [53] have created co-simulation environments where control simu-

lation logic can be deployed in real buildings with BMS. They are designed for

experimental evaluation of control algorithms and are not meant for production
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Figure 6: Control flow example of a simplified VAV. A VAV has points related to equipment

control to adjust its feeding zone’s temperature. A point’s value is often determined by other

points’ values. Such dependencies are modeled as controls.

operation of buildings.

Brick does not currently attempt to model the control logic in building sys-

tems; rather, it describes the dependencies between sensors, actuators, commands,

setpoints and related equipment and spaces. We model the control dependencies

using the controls relationship between points. When a point’s value is used

for another point’s value determination, we say that the former one controls
the later one. Figure 6 is an example with a simplified version of VAV control. An

AHU provides temperature-controlled air to VAVs, which control their associated

zones’ temperature by changing the amount of air flow. When the zone’s tempera-

ture is lower than its corresponding setpoint, the VAV increases the supply air flow

controlled by its damper. To be more specific, Cooling_Command increases

proportionally to the difference between Zone_Temperature_Sensor
and Zone_Temperature_Setpoint. Cooling_Command deter-

mines Supply_Air_Flow_Setpoint and the difference between

Supply_Air_Flow_Setpoint and Supply_Air_Flow_Sensor
determines the value for Damper_Command. Damper_Command affects

its damper’s state that controls actual air flow. We model these dependencies

with controls such as “Zone_Temperature_Setpoint controls
Cooling_Command” and “Zone_Temperature_Sensor controls
Cooling_Command”. We know from the two triples that if we want to change

Cooling_Command, we have to change Zone_Temperature_Setpoint.

Zone_Temperature_Sensor is not considered as it is a sensor that cannot
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be controlled arbitrarily.

While the exact mathematical relationships between control points are not in-

cluded, dependencies modeled as controls relations give us enough insights

for causal analysis and identify pieces of logic that an application is interested in.

To analyze Cooling_Command is working properly in terms of control logics,

we can easily find what points affect it with controls relationships and com-

pare the data from the three data points to find an anomaly. We can also easily find

the high-level commands/setpoints to properly control the equipment, which is

Zone_Temperature_Setpoint in the example. If needed, the Brick model

can be extended to incorporate more detailed control characteristics such as ex-

act math equations. For example, Ploennigs et al. model linear time invariant

dependencies for fault diagnosis [54].

4. RDF and SPARQL

4.1. Representing Knowledge in RDF
Brick adheres to the RDF (Resource Description Framework) data model [55],

which represents knowledge as a graph expressed as tuples of subject-predicate-
object known as triples. All buildings in Brick are represented as a collection

of such triples. A triple states that some subject entity has some relationship

predicate to some other entity object, which is node/directed-edge/node in the

graph theory. RDF enables easily composing different kinds of information in

buildings such as hierarchical location information (e.g., room-101 is a part of the

first floor) and interconnected equipment (e.g., a VAV is fed by an AHU)

All entities and relationships exist in some namespaces, indicated by a

namespace: prefix. This enables distinguishing and reusing entities in different

namespaces. Brick especially exploits well-defined standard vocabularies from

RDF [56], RDFS [57] and OWL [58] to express common relationships. For exam-

ple, RDFS defines subClassOf relationship to represent super-sub-concepts such

as "sensor rdfs:subClassOf temperature sensor". A user can

define multiple namespaces to reduce complexity in allocating unique names to

entities especially when she handles many buildings. If a user defines two names-

paces as bldg1 and bldg2, she can easily append namespaces to rm-101 to

distinguish the rooms in two buildings with the same name as bldg1:rm-101
and bldg2:rm-101.

The triples in Figure 7 represents the connection of the VAV to the tempera-

ture sensor using the hasPoint relationship from the example building in Fig-

ure 5. Line 5 declares an entity identified by the label building:myVAV,
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1 PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX brick: <http://brickschema.org/schema/Brick#>
3 PREFIX building: <http://example.com/building#>
4

5 building:myVAV rdf:type brick:VAV
6 building:myTempSensor rdf:type brick:Zone_Temperature_Sensor
7 building:myVAV brick:hasPoint building:myTempSensor

Figure 7: RDF triples instantiating a VAV and a Temperature Sensor and declaring that the VAV

measures temperature via that sensor.

1 PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX brick: <http://brickschema.org/schema/Brick#>
4 SELECT ?ahu ?room
5 WHERE {
6 ?zone rdf:type brick:HVAC_Zone .
7 ?room rdf:type brick:Room .
8 ?ahu rdf:type/rdfs:subClassOf* brick:AHU .
9 ?ahu brick:feeds+ ?zone .

10 ?zone brick:hasPart ?room .
11 }

Figure 8: A simple SPARQL query for retrieving all rooms connected to a given Air Handling

Unit (AHU).

this creates the myVAV entity in the building namespace. brick:VAV
is a TagSet defined by the Brick to represent any variable air-volume boxes.

rdf:type declares building:myVAV to be an instance of brick:VAV.

Similarly, line 6 instantiates a Zone_Temperature_Sensor with the la-

bel, building:myTempSensor. Line 7 uses the Brick relationship

brick:hasPoint to declare that building:myVAV is functionally associ-

ated with the given temperature sensor.

4.2. Querying Knowledge with SPARQL
Applications query the Brick graph for entities and relationships using

SPARQL (SPARQL Protocol and RDF Query Language) [48]. SPARQL queries

specify constraints and patterns of triples, and traverse an underlying RDF graph

to return those that match. For Brick applications, this underlying graph consists

of all the entities and relationships in buildings.

Figure 8, a query for retrieving all rooms which are connected to a given AHU,

contains a representative example of each of these features. Lines 1-3 declare

the prefixes for the various namespaces to shorten the references to entities; for

brevity, we omit these from all later queries in this paper. Line 4 contains the
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SELECT clause, which states that the variables ?ahu and ?room should be re-

turned (the ? prefix indicates a variable). The WHERE clause determines the types

and constraints on these variables. Line 6 states that ?zone is any entity in the

graph that is an instance of the class brick:HVAC_Zone. Likewise, line 7 de-

clares ?room to be an instance of a brick:Room.

Brick provides both generic (such as AHU) and specific classes of equipment

(such as a RoofTop-Unit AHU). A building represented in Brick can specify the

specific subclasses, or if that information is not available, instantiate a generic

class. Line 8 is a common construct in Brick queries which accounts for this type

of uncertainty in how Brick represents buildings. This sub-query returns all enti-

ties ?ahu that are either an instance of a subclass of brick:AHU or an instance

of brick:AHU itself. An application that does not require specific features of

such subclasses may want to query for the generic class rather than exhaustively

specify every possible subclass.

After declaring the types of the entities involved, the query restricts the set of

relationships between the entities on lines 9 and 10 to determine which pairs of

entities are connected. Line 9 finds all HVAC zones downstream of a particular

AHU by following a chain of brick:feeds relationships (the + indicates that 1

or more edges can be traversed as long as the edges are of type brick:feeds).

Line 10 links the identified HVAC zones with the rooms they contain. The correct

relationships to use can be determined from the Brick relationship list (Table 1).

This example query illustrates an important quality of Brick queries: estab-

lishing a link between two entities (even across different subsystems such as

HVAC and spatial) does not require explicit knowledge of all intermediary en-

tities. Rather, the query denotes the relevant entities and relationships: the query

in Figure 8 is indifferent to whatever building-specific equipment and details lie

between an Air Handler Unit and the end zones. This is possible because the

relationships between those entities all use Brick’s brick:feeds relationship.

Furthermore, the query is concise enough to return the answer only with a few

expressions.

5. Brick Development Process

Brick development was a collaborative effort from sixteen researchers across

seven institutions across the U.S. and Europe. From our experience on working

with building systems, we identified that a common expressive schema was an es-

sential step towards deployment of energy efficiency applications in buildings on

a large scale. Together we contributed BMS data from six buildings to bootstrap
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the schema development. Initially, we compiled the vocabulary of terms from

information in two buildings. We gradually expanded the vocabulary by adding

information from two more buildings. Throughout this process, our focus was

to capture information for building operations, and we excluded detailed infor-

mation covered in building models for design, construction (e.g. IFC [16]) and

energy modeling (e.g. gbXML [17], EnergyPlus [59]).

We concluded that a semantic model would best capture the complexity of

building vocabulary we gathered as exemplified by models in other fields such as

social networks [60], web search [61] and biology [62]. Hence, we organized the

terms into a class hierarchy and identified relationships that would be essential but

sufficient to capture the dependencies that existed between building equipment,

locations and data points. We decided to use tags to support keyword search and

ease of compatibility with tagging models such as Haystack [18]. We chose eight

canonical energy efficiency applications from the list of applications compiled by

Bhattacharya et al. [22] in their literature review. We identified the information

that each of these applications will require from a building model. Given the class

hierarchy and relationships in Brick, we formulated the application requirements

into SPARQL queries. The SPARQL queries clearly laid out the expected rela-

tionships between different equipment and points, and acted as the specification

for the semantic graph modeling of our testbed buildings to the Brick schema.

As our initial vocabulary was based on BMS information from four buildings,

there was a risk that the vocabulary was not general enough to capture informa-

tion found in other buildings which differ in usage or BMS vendor. To evaluate

the effect of such “over-fitting” of Brick’s tagsets to the set of known BMS points,

we examined the percentage of BMS points covered by Brick’s tagsets for the last

two buildings - Rice Hall and Soda Hall - both before and after we incorporated

their specialized points into Brick. Using an unaltered Brick, we matched 93.5%

and 93.1% of Rice and Soda Hall’s BMS points respectively, giving us confidence

that Brick vocabulary does indeed capture the diversity of data points available

across many buildings. After incorporating the BMS-specific points, they scored

98.5% and 98.7% respectively, using Brick’s class hierarchy to avoid compromis-

ing generalizability. Table 4 contains a summary of the configuration of the six

buildings, and how well Brick covers their BMS points. Examining Table 4, we

can see that Brick matches the majority of points in all six buildings.
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Entities Occupancy Energy Web Model Predictive Participatory Fault Detection NILM [63] Demand

Modeling [64] Apportionment [10] Displays [65] Control [7] Feedback [12] and Diagnosis [11] Response [21]

Po
in

ts

Temp Sensor X X

CO2 Sensor X

Occ Sensor X X X

Lux Sensor X X

Power Meter X X X X X X

Airflow Sensor X

E
qu

ip
m

en
t

Generic X X

HVAC X X X X

Lighting X X X

Reheat Valve X X

VAV X X

AHU X X

Chilled Water X X

Hot Water X X

L
oc

at
io

ns

Building X X

Floor X X X

Room X X X X X X

HVAC Zone X X X

Lighting Zone X X

R
el

at
io

ns
hi

ps

Sensor isLocIn Loc. X X X X

Equip isLocIn Loc. X X X X

Loc. hasPart Loc. X X X

Loc. hasPoint Sensor X X X X X

Equip hasPoint Sensor X X X X X

Equip hasPart Sensor X X X X

Equip feeds Zone X X X

Equip feeds Room X X X

Equip feeds Equip X X X

Zone hasPart Room X X X

Table 2: This table shows at a high level which entities and relationships are required by each of

the eight representative applications.

6. Applications

Applications interact with buildings through either reading or writing to the

necessary data points’ either historical or the most current data. However, as the

timeseries data are in different structures compared to the metadata, the interac-

tions are often separated into the following two steps. First, an application finds

the names or the identifiers of the data points of interest with their metadata. Then,

it retrieves or changes the data points’ timeseries data in a BMS or a data histo-

rian. The application will run a fault detection algorithm or change a temperature

setpoint with the retrieved data. We show how Brick and SPARQL together stan-

dardize the first step, of which typical systems lack. Brick excludes modeling the

second interaction with BMS for timeseries data retrieval because each system

has a unique interface. The two-steps interaction still could be further standard-

ized through federating metadata query and data query [66]. The federated query

is out of scope in this paper, but could be implemented upon Brick.

We consider eight applications — one from each of the application categories

compiled by Bhattacharya et al. [22]. Research has shown that each of these

applications can have a significant impact on improving building energy effi-

ciency [63, 64, 10, 65, 7, 12, 11, 21]. There have been hundreds of papers pub-

lished that discuss how to design each of these applications so as to maximize

their energy savings and we have seen several industry startups that have started
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to deploy them in real buildings [67, 68, 69, 70, 71]. If Brick successfully models

different buildings in a uniform manner and enables portability of these applica-

tions, it can have a large impact on the building energy efficiency efforts.

6.1. Application Coverage
We implemented these applications as a set of SPARQL queries identifying

the relationships in Table 2. Brick allows applications to write portable queries
that identify relevant resources in a building-agnostic manner. An application can

then adapt its behavior to the set of returned resources, likely using some API to

interact with the required points. For this reason, we implement each of the ap-

plications as a set of SPARQL queries that return the set of relevant entities and

relationships. Table 3 contains the results of running these queries over the six

buildings for each of the applications. Applications such as Occupancy, Web Dis-

play, Model-Predictive Control (MPC), and Demand Response run on most build-

ings as they are mostly related to HVAC systems, which are common in buildings.

Such applications require VAVs, AHUs, HVAC zones, relevant sensors, and their

relationships to each other. The Participatory Feedback application is designed

for lighting controls. It shows relatively low coverage of buildings as many of the

BMSes in our buildings do not expose points related to lighting systems. How-

ever, the relationships used in the application is generic for other types of systems

too. The NILM application needs power meters to dissect energy usage into mul-

tiple subsystems, and power meters may not be integrated into the BMS as in the

half of our testbed buildings.

We instantiate models from the target buildings’ BMSes, so the coverages

depend on how many data points the BMSes expose is the primary limiting factor

for whether each application runs on a building. In addition, applications have to

account for the diversity of points across buildings: Brick defines synonym tagsets

where possible, but there will always be a degree of disambiguation specific to

applications.

The primary challenge in developing portable queries was accounting for the

variance in relationships across buildings. For example, a zone temperature sen-

sor may have either an isPointOf relationship with an HVAC zone or a VAV.

These inconsistencies arise from differences in building construction and the rep-

resentation of the points in the BMS. It is possible to account for these differences

in SPARQL to construct truly portable queries with using UNION operations that

allow the temperature sensor be associated with either a zone or a VAV.

6.2. Example Application: Genie
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Building

Application EBU3B GTH GHC IBM Rice Soda

Occupancy [64] 261 245 366 821 265 232

Energy Apportionment [10] - 302 - 397 4 -

Web Displays [65] 699 81 65 835 106 605

MPC [7] 482 69 428 324 110 482

Participatory Feedback [12] - 253 - 386 - -

FDD [11] 229 29 229 728 - 136

NILM [63] 6 82 - 1348 - -

Demand Response [21] 2300 24 2490 608 4 152

Table 3: Number of matching triples in each building for the SPARQL queries consisting the eight

applications. A non-zero number indicates that the application successfully ran on the building.

Buildings with ‘-’ did not have any relevant points exposed in the BMS.

1 SELECT ?airflow_sensor ?room ?vav
2 WHERE {
3 ?airflow_sensor rdf:type/rdfs:subClassOf*
4 brick:Supply_Air_Flow_Sensor .
5 ?vav rdf:type brick:VAV .
6 ?room rdf:type brick:Room .
7 ?zone rdf:type brick:HVAC_Zone .
8 ?vav brick:feeds+ ?zone .
9 ?room brick:isPartOf ?zone .

10 ?airflow_sensor brick:isPointOf ?vav .
11 }

Figure 9: Genie query for airflow sensors and rooms for VAVs. The query returns all relevant

triples for Genie to bootstrap itself to a new building.

We show an example application from the perspective of Brick. The Ge-

nie [65] application incorporates monitoring and modeling of HVAC zone behav-

ior and power usage with occupant feedback to provide a platform for occupants

to directly contribute to the efficacy and efficiency of a building’s HVAC system.

Genie requires the following relationships:

• the mapping of VAVs to HVAC zones and rooms

• the heating and cooling state of all VAVs in the building

• the mapping of VAV airflow sensors to rooms

• all available power meters for heating or cooling equipment

Immediately, the requirements of this application outstrip the features pro-

vided by other metadata solutions. Genie needs to relate entities across subsys-
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tems typically isolated or ignored in modern BMS: the spatial construction of the

building, the functional construction of the HVAC system, and the positioning of

power meters in that infrastructure. Brick simplifies this cross-domain integration

and makes it possible to retrieve all relevant information in a few simple queries.

To identify the airflow sensors and rooms served for each VAV, the ap-

plication uses the query in Figure 9. Lines 3-4, 5, 6, 7 find all the

Supply_Air_Flow_Sensors, VAVs, Rooms and HVAC_Zones in the

building respectively. Line 8 identifies the VAVs that feed the respective

HVAC_Zones and line 9 identifies the Rooms that are part of the corre-

sponding HVAC_Zones. Line 10 finds the Supply_Air_Flow_Sensors

that are part of the corresponding VAVs. The application uses Brick’s

synonyms to capture both Discharge_Air_Flow_Sensors as well as

Supply_Air_Flow_Sensors. The “Web Displays” row of Table 3 contains

the results of running Genie over the six buildings.

7. Case Studies

We showcase the effectiveness of our schema by converting six buildings with

a wide range of BMS, metadata formats, and building infrastructure into Brick.

We discuss the challenges faced in converting the buildings into Brick as well as

to provide guidance for using Brick. We also discuss how we can map labels of

BMS points to Brick in Section 8.1 at scale.

Building Name Location Year Size (ft2) # Points % Tagsets # Relationships
Points Mapped Mapped

Gates Hillman Center (GHC) Carnegie Mellon Univ., Pittsburgh, PA 2009 217,000 8,292 99% 35,693

Rice Hall Univ. of Virginia, Charlottesville, VA 2011 100,000 1,300 98.5% 2,158

Engineering Building Unit 3B (EBU3B) UC San Diego, San Diego, CA 2004 150,000 4,594 96% 8,383

Green Tech House (GTH) Vejle, Denmark 2014 38,000 956 98.8% 19,086

IBM Research Living Lab Dublin, Ireland 2011 15,000 2,154 99% 14,074

Soda Hall UC Berkeley, Berkeley, CA 1994 110,565 1,586 98.7% 1,939

Table 4: Case Study Buildings Information.

7.1. Gates Hillman Center at CMU
The Gates and Hillman Center (GHC) at Carnegie Mellon University is a rel-

atively new building, completed in 2009, with 217,000 square feet of floor space,

9 floors, and 350+ rooms of various types (offices, conference rooms, labs), and

contains over 8,000 BMS data points for HVAC. CMU contracts with Automated

Logic3 for building management.

3Automated Logic, http://www.automatedlogic.com/

28



The GHC includes 11 AHUs of different sizes serving multiple zones: three

small AHUs serve a giant auditorium, a big laboratory and three individual rooms

respectively. Eight large AHUs supply air to more than 300 VAVs. GHC’s HVAC

system also contains computer room air conditioning (CRAC) systems which are

equipped with additional cooling capacity to maintain the low temperature in a

computer room and fan coil units systems to provide cooling and ventilation func-

tions. Brick matched 99% of GHC’s BMS points, with the remaining points be-

ing too uncommon to be required by most applications (such as a Return Air
Grains Sensor which measures the mass of water in air).

The major challenge in GHC was determining the relationships between pieces

of equipmentnot encoded in the BMS labels. While the information is available

through an Automated Logic GUI representation of the building, there was no ma-

chine readable encoding of which VAVs connected to which AHUs. This required

examining the building plans directly to incorporate more than 400 relationships

Brick representation, instead of being reliant upon manually examining a GUI to

determine relationships between equipment, is more amenable for applications in

both human and machine readable formats.

7.2. Rice Hall at UVA
Rice Hall hosts the Computer Science Department at the University of Vir-

ginia. The building consists of more than 120 rooms including faculty offices,

teaching and research labs, study areas and conference rooms distributed over 6

floors with more than 100,000 square feet of floor space. The building contracts

with Trane4 for building management.

Rice Hall contains four AHUs associated with more than 30 Fan Coil Units

(FCU) and 120 VAVs serving the entire building. Besides the conventional HVAC

components, the building features several different new air cooling units, includ-

ing low temperature chilled beams and ice tank-based chilling towers, an enthalpy

wheel heat recovery system, and a thermal storage system. The building also

contains a smart lighting system including motorized shades, abundant daylight

sensors and motion sensors. Rice Hall’s BMS points are easily interpretable for

conversion to Brick despite it containing some uncommon equipment such as a

heat recovery and thermal storage systems as part of the building design as an

energy-efficient “living laboratory”. However, the relationships defined by Brick

sufficiently captured their relationships to the other parts of the system. They

4Trane, https://www.trane.com/
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also have points specific to Rice Hall such as ice tank entering water
temperature sensor. Brick’s structure allows the clean integration of such

new tagsets into the hierarchy without disrupting the representation of existing

buildings.

7.3. Engineering Building Unit 3B at UCSD
The Engineering Building Unit 3B (EBU3B) at University of California, San

Diego hosts the Department of Computer Science & Engineering and contains

offices, conference rooms, research laboratories, an auditorium and a computer

room. The building was constructed in 2004 and has 150,000 square feet of floor

space with over 450 rooms. The BMS of EBU3B is provided by Johnson Con-

trols5, and contains more than 4500 data points, most of which related to the

HVAC system and power metering infrastructure.

The HVAC system consists of a single AHU that supplies conditioned air to

200+ VAV units and some FCUs. There are exhaust fans for all kitchens and re-

strooms and a CRAC system serving the computer room. The HVAC system also

has Variable Frequency Drives (VFD), valves, heat exchangers and cooling coils

to facilitate operation of AHU and CRAC. Brick’s schema provides the neces-

sary tagsets and relationships for all of these components.The university central

power plant provides the hot and cold water for domestic medium temperature

water system and controlling air temperature in the HVAC. The corresponding

sensors that measure the hot and cold water use such as flow rate and temperature

were modeled in Brick, but the central plant was left out as it was not part of the

building.

An issue in mapping EBU3B to Brick is that the AHU discharge air is di-

vided into two parts for two wings of the building. Brick currently does not model

how the discharge air in the AHU is divided into two wings but describe the con-

nections to other equipment such as VAVs. Additionally, EBU3B’s BMS contains

data points related to Demand Response (DR) events such as load shedding for hot

water, which exposes an interesting conflation of the representation and operation

of the building, while Brick does not model DR events as points. Because BM-

Ses have been typically written as monolithic applications over vendor-specific

interfaces, they must incorporate external signals such as DR into the set of BMS

points directly. On the other hand, Brick decouples the resources and infrastruc-

ture of a building from the building operation so that any application can operate

5Johnson Controls, http://www.johnsoncontrols.com/
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on top of Brick representation.

7.4. Soda Hall at UC Berkeley
Soda Hall, constructed in 1994, houses the Computer Science Department at

UC Berkeley. It mostly consists of closed small to medium sized offices, where

either faculty or groups of graduate students sit. The BMS system, provided by

the now-defunct Barrington Systems, exposes only the data points in the HVAC

system.

The HVAC system of the building runs on pneumatic controls, and comprises

232 thermal zones. Each zone has a VAV and especially VAVs for the zones on the

periphery of the building have reheat mechanism. For a VAV with reheat, the same

control setpoint indicates both the amount of reheat and the amount of air flowing

into a zone.While such combination is building-specific, Brick can express the fact

that the same sensor controls both the reheat and air flow by labeling the point as a

subclass of both reheat command and air flow setpoint tagsets. The

logic of the setpoint also can be described with control relationships in Brick for

dependencies to other setpoints related to actual reheat and air flow rate.

Unique to the other buildings presented here, the operational set of Soda Hall’s

HVAC components is not static. Soda Hall contains a redundant configuration

of chillers, condensers and cooling towers. At any point of time, one of these

systems is operational while the others are kept as standby. An isolation valve

setpoint indicates which of the redundant subsystems is currently operating. Brick

completely expressed the redundant subsystem arrangement, but the equipment

contained several unique points such as on timer for the chiller subsystem that

had to be added to Brick’s tagsets.

7.5. Green Tech House
The Green Tech House (GTH) was constructed in 2014 as a 38,000 square feet

office building in Vejle, Denmark. It contains 50 rooms spanning three stories and

functions as office spaces, a cafeteria, meeting rooms and bathrooms. GTH is

controlled by the Niagara BMS6, but to protect basic building functionality only

a subset of the BMS points are exposed via oBIX. As the oBIX points do not

include AHU nor VAV points, the Brick representation was constructed from a

combination of BMS points, BMS screen shots and technical documents.

Compared to the rest of the case study buildings, the thermal conditioning of

GTH is reversed: Air is heated centrally in a single AHU and distributed to VAVs

6Tridium, https://www.tridium.com/
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with cooling capabilities. The AHU uses a rotary heat exchanger to recovers heat

from the return air. The pressure of the AHU return and supply air for the north

and south side of the building is measured separately. Additionally, most rooms

have radial heating on either walls or in the floor. These are supplied by two

independent hot water loops – one for wall-mounted heaters and one for floor

heaters – heated by district heating.

The two main challenges were to (i) find, extract and merge information from

diverse sources, and (ii) to map this to Brick. Although equivalents are present

neither the BMS nor the technical documentation of GTH refers to AHUs and

VAVs. These equivalents are not named.

7.6. IBM Research Living Lab
The IBM Research building in Dublin was retrofitted as modern 15,000 m2

office in 2011 from an old factory. The building serves as living laboratory for

IBM’s Cognitive Building research and is heavily equipped with modern building

automation technology to provide a rich data source for research.

The building has been renovated multiple times and new systems were in-

stalled by different companies. The heterogeneity of systems became very high

in the building. The building contains 2,154 points collected from 11 different

systems. The building is served by 4 AHUs with 115 points but also has old dis-

connected legacy systems in the point list. Unlike the other buildings, it contains

250 smart meters and 150 desk temperature sensors. It has 1,000 points for 161

FCUsas well as 350 points on the lighting system including 150 PIR sensors and

door with people counters.

The configuration of the FCUs connected to different AHU, boilers and chillers

are unique for this building while terminal units such as VAVs and FCUs are con-

nected to a single central unit such as an AHU in the other buildings. It shows

importance of the relationship modeling and the capability of Brick.

8. Converting BMS Points to Brick

Existing building metadata and BMS points need to be converted to the Brick

schema for use by applications. The ease with which this conversion can be per-

formed will have a significant impact on its adoption. Some buildings describe the

metadata using vendor specific nomenclature while others use schemata such as

Haystack and IFC. Though existing schemata do not capture all of the entities and

relationships that Brick can express, it is possible to automate the conversion of

a subset of each schema. We describe a general approach for converting building
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metadata to Brick, present initial conversion techniques for the popular Haystack

and IFC building schemata, and demonstrate these techniques on three real build-

ings 7. Finally, we describe methods to convert vendor specific BMS metadata to

Brick.

The general approach is to parse the given building metadata into sets of en-

tities that have obvious relationships between them and then add these entities

and relationships to a Brick model. The success of a conversion depends on what

information is captured in a schema and how structured that information is. For

unstructured metadata, the conversion implementation is often site-specific. For

structured metadata, the conversion implementation is more portable.

8.1. BMS Point Conversion
Metadata in traditional BMSes is commonly represented as unstructured or

semi-structured strings identifying points of measurement or actuation. Convert-

ing BMS metadata to Brick requires extracting the semantic information, i.e. en-

tities and relationships, from these labels. Because point names are inconsistently

named across and within buildings, this conversion requires tremendous manual

effort, domain expertise and in-depth knowledge of the target building.

Figure 10 shows an example of a BMS point and the equivalent Brick repre-

sentation. To convert the BMS point to Brick, we need to infer that ZNT corre-

sponds to Zone_Temperature_Sensor, RM-101 corresponds to the room

(and HVAC zone) where the sensor is located in a building named BLD-A and

VAV-101 is a VAV feeding conditioned air to this HVAC zone. Domain ex-

perts need to provide this mapping to automate this conversion of point name to

entities. Once the entities are extracted, we can infer the relationships between

them using the fact that there are only a limited number of possible relationships

between types of entities. For example, a zone temperature sensor and a VAV

probably have a isPointOf relationship between them. However, BMS point

names do not always contain all the information necessary to fully populate a

Brick model, such as which VAVs are downstream of a particular AHU. This in-

formation could be obtained through interviews with building managers. For the

six case study buildings described in Section 7, we generate Brick instances using

Python scripts which parse point names to generate Brick entities and infer the

relationships between them8.

7These are different from the six buildings we present in our case studies (Section 7)
8https://github.com/BuildSysUniformMetadata/Brick
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Figure 10: An example of mapping raw metadata of a BMS point to Brick. The abbreviations

inside the raw metadata represent some entities in the BMS and the mapping can be given by a

domain expert or inferred by an automated inference algorithm. The relationships between entities

in the raw metadata are implicit but the number of possible relationships are limited as shown

above.

Several frameworks have been proposed to reduce the effort of converting

BMS metadata to standardized vocabularies. Because these vocabularies are well-

structured, they are simple to convert to Brick. Most of the frameworks focus on

identifying point types. Methodologies include clustering BMS metadata with

similarities to reduce the number of inputs to learn a model inferring point types

[72, 73]. Gao et al. extract features from time series data to learn a model for

point types [74]. Pritoni et al. propose to learn the relationships between AHUs

and VAVs by observing reactions of devices to artificial perturbations [75], which

is feeds relationship. Bhattacharya et al. propose a framework to construct

synthesis rules from examples presented to building managers and domain ex-

perts [76]. The synthesis rules extract all possible relationships in BMS metadata

which usually covers Equipment, Point, Location and relationships among them

like hasLocation and isPartOf.

While this family of techniques is effective for creating part of a Brick model,

the synthesis of a complete Brick model (including control relationships, spatial

information and the full specification of building subsystems) has not yet been

fully automated. The integration of many sources of building metadata for the

creation of a complete Brick model is the subject of future work.
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8.2. Converting Haystack
We have developed a simple Haystack to Brick converter. It has two com-

ponents: a translator module maps Haystack entities to Brick tagsets, and a rela-

tionship module infers a possible set of Brick relationships between those entities

using contextual information and a set of basic assumptions.

Haystack entities, like Brick entities, refer to equipment, sensors, setpoints

and other physical objects and are described using a combination of Haystack

tags and tag-value references to other entities. To convert these entities to Brick,

the translator module takes advantage of the fact that Brick tagset names are

based on Haystack tags. For each Haystack entity, the translator finds the Brick

tagset with the largest intersection with the entity’s Haystack tags and adds a cor-

responding Brick entity to the output Brick model. For example, a Haystack

entity with the tags air, exhaust, flow, his, lab, sensor and

identifier “OEA-F-3133-Lab” shares the most tags with the Brick tagset/class

Brick.Exhaust_Air_Flow_Sensor, so the translator would output the

following triple:

1 Bldg.OEA-F-3133-Lab rdf:type Brick.Exhaust_Air_Flow_Sensor

This technique captures the majority of Haystack entities, and requires only minor

additions to account for rare or site-specific equipment. These additions can be

carried forward for future translations.

The relationship module uses the tag-value pairs each Haystack entity con-

tains to populate the set of relationships around the translated Brick entity. Some

of these tag-value pairs describe aspects of the entity such as engineering units

or square footage, which could be captured in future Brick extensions. Other

tag-value pairs use “-Ref” tags to relate entities (e.g. equipRef, siteRef,

elecMeterRef). These references do not capture the full set of relationships

required by Brick, but usually imply a few obvious relationships. For example, the

elecMeterRef implies a Brick hasPoint relationship between an equipment

entity and an electric meter entity. The ubiquitous equipRef tag requires more

context. If the owner (the entity that has the tag) and the target (the value of the

equipRef tag) are both equipment, then we infer a Brick feeds relationship

between the entities. If the owner is a sensor and the target is equipment, then we

infer a Brick isPointOf relationship. With these simple contextual assump-

tions, the Haystack identifiers of the owner and target of a “-Ref” tag are enough

to generate the requisite Brick triples. Furthermore, We use the same technique
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as BMS point conversion for the relationships that are implicit in Haystack names

and identifiers, which requires a more site-specific implementation.

1 area: "546 sq ft"
2 associatedRooms: "3165, 3240"
3 canopyHoodSignage: true
4 code: "VAV-1D"
5 dcv: 1.0
6 done: true
7 equip: true
8 equipParent: "AHU 04"
9 equipRef: "AHU 04"

10 id: "VAV 4_16 Rm 3167"
11 navName: "VAV 4_16 Rm 3167"
12 priorityTwo: true
13 siteRef: "Ghausi"
14 vav: true

Figure 11: Haystack VAV entity, with spatial information encoded in the entity identifier string.

Note that only boldface tags are standardized in Project Haystack. The original author of this

metadata needed to add the other tags.

1 Ghausi.AHU_04 rdf:type brick:Air_Handling_Unit .
2 Ghausi.VAV_4_16 rdf:type brick:VAV .
3 Ghausi.Room3167 rdf:type brick:Room .
4 Ghausi.Room3165 rdf:type brick:Room .
5 Ghausi.Room3240 rdf:type brick:Room .
6 Ghausi.HVAC_Zone_4_16 rdf:type brick:HVAC_Zone .
7 Ghausi.HVAC_Zone_4_16 bf:hasPart Ghausi.Room3167 .
8 Ghausi.HVAC_Zone_4_16 bf:hasPart Ghausi.Room3165 .
9 Ghausi.HVAC_Zone_4_16 bf:hasPart Ghausi.Room3240 .

10 Ghausi.AHU_04 bf:feeds Ghausi.VAV_4_16 .
11 Ghausi.VAV_4_16 bf:feeds Ghausi.HVAC_Zone_4_16 .

Figure 12: The Brick triples (entities and relationships) generated from the Haystack entity in

Figure 11. Boldface relationships and TagSets are standardized by Brick and a user only needs to

define the identifiers. The annotative information such as duplicated names and code is omitted

from Figure 11.

Figure 11 contains the Haystack representation of a VAV entity in

Ghausi Hall on the UC Davis campus (described below). The nonstandard

associatedRooms tag and the room number in the entity identifier string

(“VAV 4_16 Rm 3167”) describe the set of rooms in the HVAC zone conditioned

by the VAV. From this entity, we can instantiate three rooms, an air handling unit,
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a VAV, an HVAC zone, and the set of Brick relationships connecting all of them.

The resulting triples are in Figure 12.

We have implemented our Haystack-to-Brick converter script in Python, total-

ing 350 lines of code9. We apply this technique to two Haystack models from the

UC Davis campus and were able to successfully translate air handling units, VAVs,

dampers, HVAC zones, rooms, setpoints and electric meters as well as tempera-

ture, humidity and occupancy sensors. Ghausi Hall is a 66,000 sq ft engineering

building with 2,183 Haystack entities; the translated Brick model contains 4,135

triples. PES is a 90,000 sq ft office and lab building with 6,475 Haystack entities;

the translated Brick model contains 15,561 triples.

8.3. Converting IFC
The IFC building information model captures a very different set of relation-

ships than Brick. However, it is still possible to generate a partial Brick model

from an IFC representation of a building. IFC models mostly consist of spatial in-

formation useful for construction such as the size and position of walls, dampers

and ducts, but also includes semantic groupings of these entities into floors, rooms

and HVAC zones. The IFC schema encodes information as “objects”, which cor-

respond to equipment, spaces and other infrastructure. Objects can also refer to

groups of objects.

We have implemented a simple converter that exports spatial information in

IFC models to Brick. The converter first scans an IFC model for all instances of

IFCZONE objects, which can correspond to an HVAC Zone, and IFCSPACE ob-

jects, which correspond to rooms. IFCRELASSIGNSTOGROUP objects associate

zones (using a “RelatingGroup” attribute) with a list of rooms (using a “Relate-

dObjects” attribute). IFCRELAGGREGATES objects associate rooms with floors

(instances of IFCBUILDINGSTOREY).

Our IFC-to-Brick converter, implemented in 100 lines10 of Python (not in-

cluding an open-source IFC file parser11), converts IFC representations of floor,

room and zones to their Brick equivalents. The converter currently makes the as-

sumption that all zones are HVAC zones because there is not enough contextual

information in the IFC model to determine the “kind” of zone without programat-

ically traversing the components of the HVAC system as represented in the IFC

model. We have successfully tested the converter on an IFC model of a 7,000 sq ft

9https://github.com/gtfierro/BrickConvert/tree/master/haystack
10https://github.com/gtfierro/BrickConvert/tree/master/ifc
11https://github.com/mvaerle/python-ifc
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Figure 13: Generic Building Operating System (BOS) Architecture, with the Brick building model

stored in the Building Profile’s metadata database.

office building in downtown Berkeley. The textual IFC model totals some 150,000

lines and the exported Brick model contains 159 triples. This informally illustrates

the expressive differences between IFC and Brick; the IFC model contains a very

detailed description of the construction physical space, but the translated Brick

model only represents the high-level spatial information required by building ap-

plications.

9. Building Operating System Integration

We have designed Brick so that it describes the essential components of build-

ings present in existing BMSes and supports applications on top of the building

system infrastructure. In this section, we outline the role of Brick in building

operating systems.

9.1. Building Operating System (BOS)
Traditional BMSes provide supervisory operation and maintenance of differ-

ent building systems. However, to support third party applications, we need to

have other functionalities such as management of metadata, data storage, search,

authentication and access control. We use the term Building Operating System
(BOS) to describe such a system. Figure 13 shows the architecture for a generic
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BOS. We can think of a traditional BMS as a single “monolithic” application en-

gineered for a specific building. It is possible to extend or augment a BMS’s

functionality, but this often requires intensive collaboration between a building

manager and a BMS engineer. In contrast, BOS seek to be much more easily

extensible. An BOS provides an application programming interface (API) that

enables users such as building managers, controls engineers and even building

occupants to integrate building components and data into novel applications. An

effective metadata solution for buildings is crucial because it allows applications

and users to easily find the necessary components for building controllers, sched-

ulers, analytics and other software.

A BOS abstracts the different types of systems, equipment and sensors in a

building with a hardware presentation layer that provides a common interface

for interactions and abstracts away different communication protocols such as

BACnet, LonTalk or ZigBee. The infrastructure components are represented in

a canonical way using Brick and stored in a database. A BOS provides stor-

age infrastructure and control system framework for applications to perform data

analytics and control operations. All the interactions with a BOS are authenti-

cated and access control permissions ensure that applications privileges are kept

in check while building managers have supervisory access. For example, building

managers would be allowed to update equipment model and create new sensor

data streams, while a fault detection application can only read the data stream.

Applications interact with a BOS using APIs and building managers will have

graphical interfaces for overseeing building operations. A few examples of BOS

include Tridium’s NiagaraAX [77] and academic efforts such as XBOS and Build-

ingDepot.

9.2. Role of Brick in a BOS
The building Brick model describes all the infrastructure components using

the Brick schema. Hence, it acts as the common metadata layer that applications

and users use to interact with the building infrastructure. This Brick building

model is stored in a metadata database and a user can search the database for

specific sensors, setpoints, equipment, etc using SPARQL. Any changes to build-

ing infrastructure can be updated by the building manager using the metadata

database. Each Brick entity is associated with a corresponding API endpoint to

retrieve historical data or send control commands. With this architecture, users

can discover resources in a building, identify relationships between building enti-

ties, and access spatial, mechanical and control system context.
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9.3. Case Study: XBOS
The eXtensible Building Operating System (XBOS) is a distributed BOS com-

posed of microservices12 communicating over a secure message bus. The BOSS-

WAVE [78] message bus provides topic-based publish-subscribe functionality cou-

pled with a fine-grained permission model. The hardware presentation layer in

XBOS communicates with BMS points, equipment, devices, data sources and

other external, networked resources using drivers. Drivers expose functionality

through standardized interfaces accessed through publishing and subscribing on

structured topic names. An archival service stores all produced data in a timeseries

database.

The Building Profile stores Brick models for the buildings in an XBOS deploy-

ment and serves SPARQL queries against them. The Building Profile provides

the necessary binding between physical entities (building subsystems, sensors,

setpoints and equipment) and logical entities (drivers, services, controllers and

streams of timeseries data). It also contains references to the timeseries data for

Brick entities such as sensors, setpoints, commands and other networked devices.

XBOS applications query the Brick model to find the equipment they need to op-

erate as well as for the necessary identifiers to either interface with that device

(by using API endpoints to communicate with XBOS drivers) or query histori-

cal state (by using timeseries identifiers to communicate with the archiver). In

XBOS, the Building Profile is implemented using HodDB, a specialized RDF/S-

PARQL database for Brick13. HodDB resolves SPARQL queries at interactive

speeds (<100 ms) and integrates with the BOSSWAVE message bus. On top of

these base services, applications implement controllers, schedulers, analytics and

dashboards for the buildings in the deployment. Low-latency Brick queries allow

all components of XBOS to make use of building metadata without significantly

impacting performance; user interfaces, controllers and alarms especially need

fast queries.

Brick is an essential component of XBOS because it enables portable appli-

cations that can discover not only physical building resources through SPARQL

queries, but also the related logical entities that provide BOS functionality.

12Martin Fowler, Microservices, https://martinfowler.com/articles/
microservices.html

13http://hoddb.org/
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(a) Data Schema (b) Example entity and TagSet.

Figure 14: Building Depot 3.0 Data Model

9.4. Case Study: BuildingDepot
BuildingDepot (BD) is a BOS designed for scalable and secure big data man-

agement across multiple buildings with a protocol-agnostic API for data storing

and actuation [25]. It consists of two types of services: (i) a Central Service (CS)

to manage metadata and (ii) a Data Service (DS) to manage timeseries data. The

metadata of BD was originally designed with tag-value pairs stored in MongoDB,

a document-oriented database. For example, a temperature sensor point can be as-

sociated with tag-value pairs such as unit: Fahrenheit and location:
Room-101. Each point in CS can have an associated timeseries data stream

stored in DS and they are linked with a unique identifier. An application can find

points matching requested tag-value pairs from CS and then request correspond-

ing data with the found identifiers to a DS. Users are also associated with tag-value

pairs for access control. When a user tries to read data of some points from DS,

her access permission is evaluated by what tag-value pairs the user is associated

with. If a user is associated with location: Room-101, she can access data

points in that room.

We implement Brick’s functionality on top of tag-based scheme that BD

was originally designed for. The data models and their examples are de-

scribed in Figure 14a. An entity’s metadata are composed of its name and the

tag-value pairs describing it.While tag-value pairs can be arbitrary, we adopt

Brick TagSets as tags and entity names as values to emulate Brick’s graph

structure. hasLocation tag in Figure 14b emulates a triple of ZNT-1
brick:hasLocation RM-101 where RM-101 is a Room. We introduce

BrickTagSets to represent TagSets and they can have Brick relationships with each

other using the tag-value pairs. While any relationship can be added to Brick-

TagSets, subClassOf and superClassOf relations are fully expanded for
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query optimization as it is common to exploit transitive queries such as finding an

instance of all subclasses of a temperature sensor. We flatten such hierarchy and

add all subclasses of an entity to the superClassOf field.

In addition, we implement a subset of SPARQL on top of tag-value querying

capability supported by document-oriented databases. Each triple in WHERE

clause of SPARQL filters candidates satisfying the triple which can be emulated

by finding documents matching with given tag-value patterns. Recursive querying

in a triple with * operator is executed with document match querying recursively.

Note that we exploit MongoDB’s document-oriented structure to minimize change

to the original BD architecture. Although its speed is lower than querying a native

RDF store, any tag-based system can adopt Brick with this framework.

10. Extensibility Model

The Brick schema currently incorporates points, equipment, location entities

that exist in modern BMS and are required for canonical applications. We envision

new applications will emerge, and developers may want to model other aspects of

a building such as its network infrastructure or security system. We have a well

defined process to perform updates to Brick. We briefly outline the process here.

We use the Brick GitHub repository14 as the main tool for update requests,

discussions and development tracking. We will have Brick maintainers who man-

age the repository. Maintainers will also manage a development road map which

would list all future milestones, i.e., anticipated changes to Brick. Community de-

velopers can take up the implementation of any of these milestones and perform

a git pull request to merge the changes with the Brick schema. Maintainers will

review the changes and perform the merge. Based on these merges, new versions

of Brick will be released. Building applications and systems can still use the older

version of the Brick and update to the newer version as per their needs. Brick ver-

sion follows the Semantic Versioning v2 system15: backward compatible changes

to Brick will be released as minor versions and non-compatible changes will be

released as major versions.

Requested changes or updates are filed as issues on the GitHub issue tracker.

Mature proposals can be submitted as Requests For Comment (RFCs), also using

the issue tracker16. The issue tracker will serve as the primary forum for discussion

14https://github.com/BuildSysUniformMetadata/Brick
15http://semver.org/
16https://github.com/BuildSysUniformMetadata/Brick/issues/25
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(a) Lighting system tagsets. (b) Power system tagsets.

Figure 15: Extended domains proposed and discussed through RFCs. The extended domains share

the same characters of hierarchical relationships among tagsets and common relationships such as

feeds already defined in Brick.

of the submitted change, but RFCs will also be announced on the mailing list17.

Community members are free to discuss issues and suggest modifications. Based

on the discussions, the Brick maintainers may choose to accept or reject the RFC.

Accepted RFCs will be added to the Brick development roadmap and included in

a subsequent release.

Discussions in RFCs cover various aspects of schema development. An

RFC for lighting systems filled the gap of domain expertise among the orig-

inal Brick developers by providing exact hierarchy of necessary TagSets and

expedited discussions to select common vocabularies across different domains

(e.g., occupancy sensor in HVAC and presence sensor in lighting

systems) and to find common concepts in the domains (e.g., interface for

thermostat in HVAC and LED touch panel in lighting systems. We will

discuss lighting systems and electrical power systems extended through RFCs in

Section 10.1.

10.1. Ongoing Extensions
Several external contributors have proposed extensions to lighting systems

and electrical systems in the Brick schema. The essential concept in the light-

17https://groups.google.com/forum/\#!forum/brickschema
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ing system is the lighting fixtures and its control system18. We introduce the

tagset Luminaire to represent lighting fixtures and Luminaire_Driver for

the corresponding end point controllers. A Lighting_Zone is the area in the

building that is controlled by a single Luminaire_Driver. We introduced

the tagset interface to capture devices that are designed for human inter-

action. These are common across domains: dimmer in lighting systems and

thermostat in HVAC. We reuse the feeds relationship to model the relation-

ship of luminaire feeding light to lighting zone. The basic taxonomy is

shown in Figure 15a.

The proposed extensions to the electrical power system captures the con-

cepts in the power distribution network and related equipment19. Each equip-

ment is either used for isolation - Bus, Transformer or protection -

Circuit_Breaker. Each of the categories has specialized equipment, e.g.,

Panel_Board is a type of Bus. Such hierarchical relationship is captured well

with subclasses in Brick. We again reuse feeds to model flow of electricity from

transformer to circuit breaker, circuit panel, isolator, and

then to end equipment like a refrigerator. Power meters are modeled equip-

ment that hasPoint such as power, voltage, current. With power
meter and feeds relationship, a user can easily query what loads a power me-

ter is measuring.

11. Integration with Other Ontologies

There are various aspects of buildings that applications need to exploit and

not a single model can describe everything. Even though integrating different on-

tologies and standards for a system is a common practice, there has been little

discussion in how to systematically integrate different models in buildings. In

RDF framework, it is easy to extend Brick to accommodate other ontologies by

connecting relevant concepts via either predefined or custom relationships. Each

ontology community can maintain and develop their own model without deteri-

orating the other models. While Brick is agnostic to the integration for a target

system, we show the integration with three ontologies of different aspects in Fig-

ure 16, showing Brick’s flexibility and extensibility even for the scope outside

18Lighting System RFC: https://github.com/BuildSysUniformMetadata/
Brick/issues/29

19Electrical System RFC: https://github.com/BuildSysUniformMetadata/
Brick/issues/28
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Figure 16: Integration of Brick with other ontologies. Common concepts are linked through

subClassOf relationships and auxiliary concepts are connected through new relationships. This

integration provides all the functionalities without violating any models.

Brick’s original design.

11.1. Unit of Measurement (QUDT)
Units of measurement vary across different systems even for the same mea-

surement type such as Celsius and Fahrenheit for temperature. They should

be explicitly given to applications so that they can interpret corresponding data

unambiguously without human interruption. QUDT is a representative ontol-

ogy for quantities, units, and data types [79]. We integrate vocabularies under

QuantityKind and Unit among QUDT connected via hasQuantityKind
and hasUnit individually as shown in Figure 16. QuantityKind represents

"any observable property that can be measured and quantified numerically [79]"

such as temperature and energy. The vocabularies under QuantityKind can

be automatically associated with Brick Point TagSets that contain Tags of what

they measure. For example, temperature sensor contains temperature
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1 # query name: unit conversion
2 PREFIX unit: <http://qudt.org/vocab/unit/>
3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4 PREFIX qudt: <http://qudt.org/schema/qudt/>
5 PREFIX bf: <https://brickschema.org/schema/BrickFrame#>
6 PREFIX building: <http://example.com/building#>
7 SELECT ?result
8 WHERE {
9 VALUES (?currVal ?targetUnit) { (70 unit:DEG_C) } .

10 building:ZNT-101 bf:hasUnit ?srcUnit. # Assume ?srcUnit is unit:DEG_F.
11 ?srcUnit qudt:conversionMultiplier ?srcFactor. # ?srcFactor = 1.0
12 ?srcUnit qudt:conversionOffset ?srcOffset. # ?srcOffset = 273.15
13 ?targetUnit qudt:conversionMultiplier ?targetFactor. # ?targetFactor = 0.5556
14 ?targetUnit qudt:conversionOffset ?targetOffset. # ?targetOffset = 255.372
15 BIND ((((xsd:float(?currVal) * xsd:float(?srcFactor) + xsd:float(?srcOffset))
16 - xsd:float(?targetOffset)) / xsd:float(?targetFactor)) AS ?result).# =21.11

(a) Automated unit conversion: This query converts a temperature value from the sensor in

an unknown unit into Celsius. The base unit of temperature units is Kelvin (retrieved from

QUDT) and the parameters converting them into Kelvin can be automatically retrieved

from QUDT and then used to produce a value in the target unit. The value in the source

unit is converted into the base unit, Kelvin, and into the target unit, Celsius, in turn.

This query returns the right conversion of 70◦F in Celsius, 21.11. bldg:ZNT-101, the

target value 70, and the target unit unit:DEG_C can be parameterized for more generic

usage. In SPARQL, VALUES provides inline values to variables and BIND assign values

in certain rules to a variable.

1 # query name: unit validation
2 # Same namespace prefixes in the above query.
3 SELECT ?isApplicable
4 WHERE {
5 VALUES ?target {building:ZNT-101} .
6 ?target bf:hasQuantityKind ?qk .
7 ?target bf:hasUnit ?targetUnit .
8 ?qk qudt:applicableUnit ?applicableUnit .
9 BIND (?applicableUnit = ?targetUnit AS ?isApplicable) .

10 }

(b) Automated unit validation: This finds a QuantityKind and a Unit corresponding to the

sensor ZNT-101, and then checks if the unit is found in the QuantityKind’s applicable unit

set. building:ZNT-101 can be parameterized.

Figure 17: Example usages of QUDT with Brick.

as a tag and we can infer that any instances of temperature sensor should

temperature as a QuantityKind Unit is "a particular quantity value that

has been chosen as a scale for measuring other quantities the same kind [79]" such
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as Celsius and Joule. Building domain’s unit vocabularies can be extracted from

BACnet vocabularies or directly adopted from QUDT in the future. QUDT de-

fines extensive instances of both QuantityKind and Unit and each instance

of QuantityKind is associated with a set of units through the relationship,

applicableUnit. Thus, we can systematically define the semantic relation-

ships between Brick points and units through QUDT.

Given the explicit representation of units as an ontology, we can automate var-

ious use cases handling units [80]. We present two of the use cases in Figure 17

useful for building management and applications. The first one (Figure 17a) is

to convert a value in a unit into a target unit automatically. An application does

not need to know unit conversion rules for given values but just needs to submit

the query with a value for a target unit, Celsius in the example. The second one

(Figure 17b) is to validate if the given unit for a point is valid with the correspond-

ing quantity kind. There can be human errors with building managers/designers

writing any metadata as observed in our existing BMSes. The validation query

matches the found unit to units applicable to the corresponding quantity kind.

The integration enables the automatic functionalities without human interruptions

with the unit composition rules defined in QUDT.

11.2. Control Logic (CTRLont)
Even though Brick’s controls relationships can represent control depen-

dencies between Points, some applications may require full control logic such

as PID controllers and state machines. CTRLont [81] is an ontology modeling

control logic that can fully describe control actors and logic, and modularize the

logic to ensure reusability and easy extension. Especially, it is an ontology that

can be simply integrated with Brick. Its core concept is sense-process-actuate

to model control processes where ControlActor process Inputs based on

ApplicationLogic and produces Outputs that may actuate devices. Points

in Brick receives inputs based on controls relationships from other points to

produce its own output, which is an abstraction of ControlActor in CTRLont.

point being a subclass of ControlActor, every controls relationship can

be more specified through the Input-isConnectedTo-Output relationship and its

logic can be specified by ApplicationLogic modules. As Point inherits the prop-

erties of ControlActor without a conflict, the integration can exploit any function-

alities originally argued by CTRLont such as automated rule-based verification of

control logic in BMS [81].
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11.3. Electrical Power System (SEAS)
Smart Energy Aware Systems (SEAS) Knowledge Model [82] is an ontol-

ogy aligning energy systems to existing ontologies such as SOSA (Sensor, Ob-

servation, Sample, and Actuator) ontology [83] and SAREF (Smart Appliances

REFerence) ontology [19] and has several subdomains including electric power

systems. Brick has already extended vocabularies to electrical power systems, but

further extensions of the vocabulary set and sustainable cooperation with other

models would be practically required for system interoperability and portability.

In SEAS, Systems are connected with each other through Connections like

a transformer is connected to a power consumer through a bus. In Brick’s de-

sign, both System and Connection are a type of Equipment that can be

monitored, controlled and functionally connected to each other.

However, the connection in SEAS ontology is undirected while feeds is di-

rectional. In SEAS, the connection through a bus represents physical connection

as a mere wire through which electricity can flow in any directions. connectedThrough
tells that a system and a connection are connected but not the direction of electrical

current. Any of a consumer, transformer, or generator is just connectedThrough
a Connection, e.g., a bus.On the other hand, in Brick, the connection is rather

functional as the electricity flows through the wire based on the role of the system

on each side like from a transformer to a consumer through a bus. Thus, merging

the relationships raises a logical conflict in RDF though a user may keep both of

the relationships for the system. In the integration, two different models can share

the common vocabularies for equipment, providing both of the functionalities.

12. Conclusion

There are millions of buildings in the world and they constitute a major por-

tion of the human energy footprint. With the growing efforts to mitigate climate

change, numerous building energy efficiency solutions have been invented, tested

and deployed. To truly have a large scale impact of these solutions, they need to

be deployed in numerous buildings worldwide. The heterogeneity of building rep-

resentation presents a major bottleneck in fast and low cost deployment of energy

efficiency measures.

We have designed the Brick schema as a strong candidate to solving this open

problem. Brick builds upon prior work and introduces a number of novel concepts.

Brick uses easy to understand tags and tagsets to specify sensors and subsystems

in a building. We define tags and tagsets in an ontology with class hierarchies. We
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also define portable and orthogonal relationships between entities from an exten-

sive list of smart-building applications. Relationships among entities are repre-

sented as triples, which allows us to leverage existing tools to build and query the

representations. We also show the extensibility model and its interoperability with

other existing schemata and ontologies. We also propose practical methodologies

to use Brick in the real world including how to convert existing unstructured and

structured metadata into Brick and how to integrate Brick with actual building

systems.

Brick is complete, capturing an average of 98% of BMS data points across

six diverse buildings comprising almost 17,700 data points and 615,000 sq-ft of

floor space. Brick is expressive, successfully running eight canonical applications

on these buildings. Four applications ran on all the six buildings, while the re-

maining applications ran on buildings whose BMS exposed the requisite points.

Brick is usable, as converting each of the buildings’ legacy BMS metadata to the

normalized schema took no more than 20 man-hours with semi-automated meth-

ods. Given structured metadata such as Haystack and IFC, the conversion process

can be automatic. The resulting schema is understandable and easy to query as

shown in Figures 7, 8 and 9. Brick was integrated with two example systems

under a common BMS architecture while providing querying capability. Active

discussions under RFCs show cases the success of Brick’s extensibility model.

Brick maintains orthogonality in describing tagsets and relationships, i.e. there

is a single straightforward way to describe an entity, collection of entities and

their inter-relationships. Open references of our six buildings provide a com-

mon platform to evaluate different schemata. The code, schema, and reference

implementations of all the buildings in our testbed are available at http://
brickschema.org/.

We hope that our solution to this well-defined open metadata problem lays the

foundation for industry and academic collaboration to produce bona fide standards

that could be transformative in producing energy efficient buildings and portable

applications.
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