
Application-Driven Creation of Building Metadata Models with
Semantic Sufficiency

Gabe Fierro

gtfierro@mines.edu

Colorado School of Mines

National Renewable Energy

Laboratory

Golden, Colorado, U.S.A.

Avijit Saha

Avijit.Saha@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, U.S.A.

Tobias Shapinsky

Tobias.Shapinsky@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, U.S.A.

Matthew Steen

Matthew.Steen@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, U.S.A.

Hannah Eslinger

Hannah.Eslinger@nrel.gov

National Renewable Energy

Laboratory

Golden, Colorado, U.S.A.

ABSTRACT
Semantic metadata models such as Brick, RealEstateCore, Project

Haystack, and BOT promise to simplify and lower the cost of de-

veloping software for smart buildings, enabling the widespread

deployment of energy efficiency applications. However, creating

these models remains a challenge. Despite recent advances in cre-

ating models from existing digital representations like point labels

and architectural models, there is still no feedback mechanism to

ensure that the human input to these methods results in a model

that can actually support the desired software.

In this paper, we introduce the notion of semantic sufficiency,
a practical principle for semantic metadata model creation that

asserts that a model is “finished” when it contains the metadata

necessary to support a given set of applications. To support seman-

tic sufficiency, we design a standard representation for capturing

application metadata requirements and a templating system for

generating common metadata model components with limited user

input. We then construct an iterative model creation workflow that

integrates metadata requirements to direct the model creation effort,

and present several novel optimizations that increase the model

utility while minimizing the effort by a human operator. These

new abstractions for model creation and validation lower model

development costs and ensure the utility of the resulting model,

thus facilitating the adoption of intelligent building applications.

CCS CONCEPTS
• Information systems → Information systems applications;
Ontologies; Retrieval tasks and goals.

KEYWORDS
Brick, ontology, metadata, semantics, applications

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

BuildSys ’22, November 9–10, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9890-9/22/11.

https://doi.org/10.1145/3563357.3564083

ACM Reference Format:
Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah

Eslinger. 2022. Application-Driven Creation of Building Metadata Models

with Semantic Sufficiency. In The 9th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys
’22), November 9–10, 2022, Boston, MA, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3563357.3564083

1 INTRODUCTION
The digitization of the built environment will enable a wide array of

intelligent, data-driven applications — including model predictive

control, predictive maintenance, and fault detection and diagnosis —

but will also require confronting new data management challenges.

In particular, the increasing prevalence of digital control and mon-

itoring systems in buildings means more data is available about

buildings than ever before [13]. However, the effective use of that

data is impeded by (1) the heterogeneity of the building stock and

(2) the lack of standardized descriptions of buildings and the data

they produce [7].

Semantic metadata models have emerged to address this need.

Graph-based models such as Brick [5], RealEstateCore [18], Build-

ing Topology Ontology (BOT) [30], and the proposed ASHRAE

Standard 223P [4] use graph-based data models to capture rich,

formal descriptions of buildings: their architecture, the structure

and composition of their subsystems, and the data they produce.

Other building metadata models like Google Digital Buildings [8]

and Project Haystack [2] capture similar building characteristics.

These metadata models are shown to reduce development time for

many different kinds of applications for buildings [28]. In platforms

like Mortar [16], Energon [19], and the DataClearingHouse [3],

applications query metadata models to configure themselves for

execution on a particular building. This reduces the amount of man-

ual configuration necessary. While use of these models is growing

across industry, academia, and regulatory sectors, creatingmetadata

models remains a barrier to their widespread adoption.

Prior work has explored techniques for producing metadata

models from existing digital representations such as building man-

agement system (BMS) points [10, 20], building information models

(BIM) [22], and others [15]. While these efforts all help to automate

https://doi.org/10.1145/3563357.3564083
https://doi.org/10.1145/3563357.3564083

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah Eslinger

the model authoring process, they omit the crucial feedback of

whether or not the produced model is actually useful: in short, how

does one know when a building metadata model is “done?” To date,

there has been no effort to align the effort of creating a metadata

model to the needs of downstream applications.

In this work, we introduce and formalize the notion of semantic
sufficiency, a principle for model creation stating that a model is

“complete” when it contains enough semantic metadata to support a

desired suite of applications. We show how themetadata require-
ments of applications can be represented in a structured and formal

manner using shapes. We also introduce the idea of templates that
automate the creation of common patterns in metadata models. We

then show how templates and shapes can inform the creation of

a building metadata model to both reduce required input from a

human operator and ensure that the resulting model supports all

of the intended applications. To wit, the contributions of this paper

are:

• introduction and formalization of semantic sufficiency (§3), a

practical principle for metadata model creation

• design and implementation of shapes (§3) and templates
(§4) for capturing application requirements and automat-

ing model creation, respectively

• a novel algorithm for incremental model creation (§5)

• an open-source reference implementation of the above (§7)

We also demonstrate the utility of the proposed approach in a case

study implementing high-performance sequences of operations

on a public reference building (§6). Although the examples and

evaluations in this paper focus on the Brick ontology, none of the

techniques or contributions above are specific to Brick — they will

work on any Resource Description Framework (RDF) [23]-based

ontology including RealEstateCore [18], ASHRAE 223P [4] and

BOT [30].

2 BACKGROUND AND PRIORWORK
Semantic metadata models are digital representations of buildings,

their components and their data; these can be expressed naturally

as graphs. Graphs are effective for capturing the composition and

topology of building systems, which tend to be complex and highly

inter-related [14]. Many of these graphs are built with the RDF

standard, which is an expressive and flexible data model standard

for describing directed, labeled graphs. Graphs can be structured

according to ontologies, which are formal descriptions of knowledge

domains. Ontologies provide structure through formal logic axioms

that ensure the statements in the graph have computationally inter-

pretable meanings (i.e. “semantics”). Examples of contemporary se-

mantic metadata models for buildings include Brick [5], RealEstate-

Core [18], BOT [30] and ASHRAE 223P [4]. Other metadata models

like Google Digital Buildings [8] and Project Haystack [2] are built

on bespoke rather than standard technologies, but can be exported

to RDF graphs.

Automating the creation of building metadata models is a critical

feature due to the size and complexity of building subsystems. Ini-

tial approaches focused on applying active learning techniques to

parse unstructured labels in building management systems (BMS)

to order to infer the types of sensors and other I/O points [10, 20].

These techniques struggle to infer basic relationships between the

points and other devices in the building [24]. Other work has lever-

aged existing, structured, digital representations of buildings such

as building information models [15, 22]. These techniques often

have trouble accurately determining system topology and compo-

sition due to the variability in how these formats are applied in

practice. As a result, there is still a need for human input both in dis-

ambiguating ad-hoc labels and descriptors, as well as determining

which elements of large digital models are the most helpful.

The use of external constraints to inform the creation of a digital

model has been established in the built environment literature, and

is already used by several existing projects. BuildingSync uses XML

schema documents to define what fields are required for different

kinds of energy audits [25]. Model View Definitions in Industry

Foundation Classes (IFC) define the subset of a building information

model that must exist to enable certain kinds of applications. [27]

uses the Shapes Constraint Language (SHACL) to validate a linked

data model for particular building use cases (such as for the BOT

ontology). Reasonable Ontology Templates (OTTR) [32] is a recently

developed templating mechanism for authoring ontologies and

semantic metadata models; we will investigate the use of OTTR in

future work.

3 SEMANTIC SUFFICIENCY
A key concern when developing a semantic metadata model of a

building is knowing when that model is “complete”. We contend

that the traditional notion of “completeness” – modeling all possible

assets, data sources, components and relationships in a building –

is intractable in most settings for two reasons. First, this metadata

may simply be unavailable. Building subsystems are large, complex,

and have many components, yet much of this detail is unavailable

in brownfield settings where the only reliable sources of metadata

are BMS graphics and point lists. Second, because there are innu-

merable perspectives of a building that can be modeled, metadata

representations may be unbounded in their complexity, forcing

developers to wade through thousands of unrelated statements to

find the information they need. These motivate the need for a new

guiding principle for semantic model creation.

To this end, we propose and formalize semantic sufficiency, a
definition of “completeness” for semantic model creation that mini-

mizes model creation effort and maximizes the utility of the pro-

duced model. Semantic sufficiency holds that a semantic model is

“complete” when it contains sufficient information to support the

configuration and execution of a predetermined set of applications.
With this principle, we seek to formalize results from prior work

that finds only a subset of all building points are required for many

common data-driven applications [9, 10, 31].

To formalize semantic sufficiency, we must be able to specify

application requirements and verify that a model satisfies those

requirements. We begin by presenting a formalism for defining

RDF-based metadata models and constraints over those models,

then apply this formalism to defining application requirements.

3.1 Preliminaries
For simplicity, we restrict the definition of semantic metadata mod-

els to those that are defined using the RDF data model [23]. The

RDF model defines a directed, labeled graph as a set of 3-element

Application-Driven Creation of Building Metadata Models with Semantic Sufficiency BuildSys ’22, November 9–10, 2022, Boston, MA, USA

1 @prefix brick: <https://brickschema.org/schema/Brick#> .
2 @prefix ex: <urn:bldg#> .
3 ex:vav1 a brick:VAV ;
4 brick:hasPoint ex:safs1, ex:sats1, ex:zts1, ex:co2s1 ;
5 brick:hasPart ex:vdmp1 ;
6 brick:feeds ex:zone1 .
7 ex:safs1 a brick:Supply_Air_Flow_Sensor .
8 ex:sats1 a brick:Supply_Air_Temperature_Sensor .
9 ex:zts1 a brick:Zone_Air_Temperature_Sensor .
10 ex:co2s1 a brick:CO2_Sensor .
11 ex:vdmp1 a brick:Damper ;
12 brick:hasPoint ex:dmppos1 .
13 ex:dmppos1 a brick:Damper_Position_Command .
14 ex:zone1 a brick:HVAC_Zone ;
15 brick:hasPart ex:room1, ex:room2 .
16 ex:room1 a brick:Room ;
17 brick:hasPoint ex:co2s1 .

Figure 1: A Brick model defining a variable air volume box
and its relationship to a zone and constituent room.

Figure 2: A graphical representation of the Brick model in
Figure 1. Bold, white nodes are entities in the building whose
types are given by classes (solid colored nodes).

statements called triples. Together, these statements constitute a

digital representation of the building and its components. A triple

𝑡 ∈ 𝑇 is a 3-tuple (𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡) — also written (𝑠, 𝑝, 𝑜)
— stating the relationship (predicate) that a subject node has to a

object node. A graph 𝐺 can be expressed as a set of triples:

𝐺 = {𝑡 : 𝑡 ∈ 𝑇 }
See [23] for a more complete description of RDF.

Figure 1 contains a textual representation of a Brick model; Fig-

ure 2 illustrates the graph described by these triples. The structure

of these models is informed not only by the characteristics and

components of a building, but also by the ontology used. We focus

on ontologies built with the Web Ontology Language (OWL) [6] or

SHACL [1]. A full tutorial on these languages is beyond the scope

of the paper, but it is sufficient to know that an ontology is a formal

encoding of domain knowledge into types, constraints, properties,

and rules that can be computationally verified.

3.2 Application Requirements
To scope the discussion of how to specify application requirements,

we first synthesize a generic definition of applications that incor-

porate semantic metadata. An application is a piece of software

that accesses or queries a metadata model of a building in order

to configure its operation, retrieve data, and discover actuatable

resources. Our definition borrows from prior building application

literature [16, 19, 21, 33] and encompasses a wide-range of existing

building-related software such as (automated) fault detection and

diagnosis, sequences of operation, measurement and verification,

and building energy modeling.

A specification of required metadata — a manifest — must there-

fore capture a description of what the application expects to be

present in the model. Manifests may be composed from many

sources, including customer specifications, regulatory requirements,

industry recommendations, and equipment specification (spec)

sheets. Formally, a manifest𝑀 is a function that takes a model 𝐺

as an argument and returns true or false if the model satisfies the

predicates encoded in the manifest:

𝑀 (𝐺) → {true, false},𝐺 ′

If the check returns false, a manifest can also return optional meta-

data 𝐺 ′
(specifically, a SHACL validation report as defined in [1])

specifyingwhat is deficient about themodel. Our incremental model

creation algorithm (§5) uses this metadata to generate an efficient

plan for creating a semantically sufficient semantic metadata.

There are two ways of structuring the manifest: query-oriented

and shape-oriented.

3.2.1 Query-Oriented Manifests. First, a manifest can consist of a

set of queries
1
. SPARQL is the standard query language for RDF

models [29]. If all of the queries return results when evaluated

against the input model, then the model passes the check and the

manifest is satisfied. These types of manifests are easier to author

and consume because they use the same queries as the application

itself. A fundamental limitation of this query-oriented model is that

query evaluation cannot identify the parts of the graph that do not
satisfy the query predicate. This makes it more difficult to describe

missing or incorrect metadata (a critical feature explored in §5) and

also gives no guarantees that an application deployment is correct.

3.2.2 Shape-Oriented Manifests. A manifest can also consist of a

set of shapes. A shape is a set of conditions expressed in the form of

an RDF graph according to the SHACL standard [1]. The SPARQL

and SHACL languages have similar expressive power; however,

there are two advantages of using the shape-oriented approach

over the query-oriented approach. First, the declarative nature of

SHACL conditions and constraints makes it possible to identify

exactly what is deficient or incorrect about a particular subgraph.

This provides an avenue by which suggestions or improvements

can be provided to the model author. §5 demonstrates how we

capitalize on this feedback to further automate model creation. Sec-

ond, SHACL-based constraints are more composable than their

equivalent statements in SPARQL. SHACL shapes can be named,

enabling references between shapes, and parameterized, enabling

customized behavior based on further conditions. This composabil-

ity enables ourmodel authoring approach to reason about collections
of application requirements, rather than dealing with each applica-

tion individually. Therefore, we focus our discussion of application

requirements on SHACL-based manifests.

3.2.3 SHACL Shapes. While a full description of the SHACL lan-

guage and its extensions is beyond the scope of this document,

we outline the essential structure and behavior of the language as

it applies to application requirements. SHACL is a language for

validating RDF graphs against a set of constraints and conditions

and for generating new information about RDF graphs with rules.

Constraints, conditions, and rules are grouped into shapes, which
are expressed as RDF graphs.

1
This is the formulation adopted in the original Brick paper [5]

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah Eslinger

brick:Zone_Air_
Temp_Setpoint

Graph G

brick:hasPoint

brick:VAV

=1 ≤1

brick:Zone_Air_
Temp_Sensor

brick:Zone_Air_
Temp_Setpoint

Shape
4.1-vav-cooling-only

brick:hasPointbrick:VAV

rdf:type

rdf:type

bldg:vav1

bldg:sp1

Validation M(G)

bldg:vav1

=1

brick:Zone_Air_
Temp_Sensor

bldg:sp1

Report

brick:hasPoint

M(G) = false
Validation failed

Figure 3: SHACL shape for part of a VAV system configuration
being used to validate a Brick model

A shape contains a target: a specification of which nodes in

an RDF graph the shape applies to. Only matching nodes will be

subject to the rules, constraints, and conditions defined by the

shape. The SHACL language allows shapes to require the presence

or absence of relationships between certain kinds of nodes (e.g. “all

air handling units [AHUs] must have a downstream variable air

volume [VAV] terminal”), place bounds on the cardinality of certain

relationships (e.g. “buildings must have at least one electric meter”),

and other structural and semantic constraints. Although not the

focus of this paper, SHACL can also generate new information in an

RDF graph, e.g. classifying all AHUs with both hot and cold ducts

as “dual-duct” AHUs.

Shapes can refer to other shapes, and can leverage the many

common boolean operators such as and, not, or, and xor. This
permits the expressive composition and reuse of shapes; we leverage

this feature to formally define semantic sufficiency below (§3.3).

3.2.4 Example: ASHRAE Guideline 36 Point List. We briefly illus-

trate some essential SHACL features by formulating an applica-

tion manifest for a industry-recognized sequence of operations.

ASHRAE Guideline 36 [17] defines point lists of input/outputs that

must be presented to the controller for the sequence of opera-

tions to operate. Figure 3 illustrates a subset of the VAV Terminal
Unit - Cooling-Only configuration from Guideline 36 with a shape

named 4.1-vav-cooling-only. The shape constrains the type of
the equipment and the BMS points associated with that equipment.

3.3 Model Verification
Using the above formulation of application requirements as shape-

oriented manifests, we now formalize how sets of application re-

quirements can be composed to verify whether a metadata model

satisfies the requirements, i.e. whether it is semantically sufficient.
We refine our earlier definition of a manifest𝑀 as a set of shapes:

𝑀 = {𝑆 : 𝑆 ∈ S}

where S is the set of all SHACL shapes. This simple definition

gracefully permits the composition of manifests: to specify that a

semantic metadata model should contain the information for two

applications with manifests 𝑀1 and 𝑀2, we simply create a new

manifest that is the union of the shapes in each manifest:

𝑀
unified

= 𝑀1 ∪𝑀2 = {𝑆 : 𝑆 ∈ 𝑀1} ∪ {𝑆 : 𝑆 ∈ 𝑀2}

We can now formally define semantic sufficiency. A model (RDF

graph),𝐺 , is semantically sufficient with respect to a set of manifests

M when it satisfies all of the constraints (SHACL shapes) contained

in the union of those manifests:⋃
M

(𝐺) = true,𝐺 ′
; |𝐺 ′ | = 0

3.4 Discussion
Semantic sufficiency closes the loop between creating a semantic

metadata model and using that model to support real applications.

This facilitates the adoption of semantic metadata by making the

structure, contents, and uses of that metadata more concrete.

With semantic sufficiency, building stakeholders can place stricter

and more descriptive requirements on the metadata delivered dur-

ing building design, construction, and operation such as BMS in-

stallation or commissioning. It also allows stakeholders to auto-

matically verify that the correct metadata has been delivered. Stan-

dardized representations of application metadata requirements also

make it possible to compare vendors for a particular application and

to make more precise cost-based decisions on what applications

to install. For example, the estimated savings through installing

an advanced control sequence can be balanced against the cost of

commissioning the BMS points required to support that control

sequence. Lastly, making application metadata requirements trans-

parent makes it easier to re-use metadata between applications,

ultimately leading to lower commissioning and integration costs.

4 TEMPLATES
Manifests express the semantic metadata requirements of appli-

cations, but they do not directly inform the creation of semantic

metadata models. To this end, we introduce templates, which ab-

stract away the piecemeal “triple-by-triple” approach to authoring

RDF models to simplify and accelerate the model development pro-

cess. At a high level, templates are functions that generate graphs.

The evaluation (or instantiation) of a template produces part of a

building graph in a consistent manner, allowing model authors to

avoid manually creating the graph. Figure 4 contains an example

of a simple template. In this section, we formally define templates

and the operations they support.

4.1 Preliminaries
A template𝑇 (𝑃,𝐺, 𝐷) is characterized by a set of parameters 𝑃 , the

body of the template 𝐺 , and a set of dependencies 𝐷 . The set of all

templates is given by T .

We write the parameters of a particular template𝑇 as𝑇𝑃 . Parame-

ters are the inputs to the template and are required unless explicitly

marked as optional. The body is an RDF graph that will be output

by the template, with at least |𝑇𝑃 | labeled “holes” corresponding to

where the template parameters will be substituted in.

Dependencies are inter-template references that enable template

re-use and composition. A dependency 𝑑 (𝑛, 𝐵) ∈ 𝐷 is parameter-

ized by a name 𝑛 and a set of bindings 𝐵. A dependency’s name

𝑑𝑛 ∈ T is a pointer to the template dependency, denoted as 𝑇𝑛
. A

binding 𝑏 ∈ 𝑇𝑃 is an association 𝑏
dependency

→ 𝑏
dependent

, where

𝑏
dependency

∈ 𝑇𝑃 and 𝑏
dependent

∈ 𝑇𝑛
𝑃
. Intuitively, the binding asso-

ciates parameters in the dependency to parameters in the dependent

(the template owning the dependency). The set of bindings 𝑑𝐵 for

the dependent template must be a subset of the dependent’s param-

eters: 𝑑𝐵 ⊆ 𝑇𝑃 .

Application-Driven Creation of Building Metadata Models with Semantic Sufficiency BuildSys ’22, November 9–10, 2022, Boston, MA, USA

1 vav:
2 body: >
3 {name} a brick:VAV ;
4 brick:hasPoint {temp}, {sp}, {flow} .
5 dependencies:
6 - name: sup-air-temp
7 args: {"temp": "name"}
8 sup-air-temp:
9 body: >
10 {name} a brick:Supply_Air_Temperature_Sensor ;
11 brick:hasUnit unit:DEG_C .

Figure 4: Simple template defining a VAV with some points.
One of the template dependencies is also listed.

4.2 Template Usage
Evaluation is the process by which a template produces an RDF

graph. The evaluation of a template is given by the function

𝑇 (𝐵) →
{
𝑇 ′(𝑇𝑃 − 𝐵, 𝐷 ′) if |𝐵 | < |𝑇𝑃 |
𝐺 if |𝐵 | = |𝑇𝑃 |

that accepts a set of bindings (𝐵) to 1 or more parameters. A binding

𝑏 (𝑝, 𝑒) ∈ 𝐵 is an association between a parameter 𝑝 ∈ 𝑇𝑃 and an

RDF node or property 𝑒 ∈ I × B × L. I is the set of RDF IRIs, B is

the set of RDF blank nodes, and L is the set of RDF literals.

If all of the template parameters (𝑇𝑃) have a corresponding bind-

ing, then template evaluation returns an RDF graph𝐺 (case 2 above).

If there are fewer bindings than parameters (case 1 above), then

evaluation returns a new template 𝑇 ′
that adopts the remaining

parameters and adjusts the template body 𝑇𝐺 to incorporate the

bindings provided during evaluation.

By reducing the problem of creating graphs to passing param-

eters to functions, it becomes possible to support various input

modalities and formats. One goal of standardizing a template struc-

ture is to provide a common basis for future innovation in authoring

metadata models. We describe three existing input modalities sup-

ported by our reference implementation:

Direct evaluation: Templates can be evaluated directly by soft-

ware packages such as the reference implementation described in

§7. This allows the population of a building model to be done in

tandem with other processes, such as scraping a BMS network, ap-

plying OCR techniques to building plans (blueprints), or translating

from existing digital building representations.

Spreadsheets and tables: The input parameters for a template

can be treated as the columns of a tabular schema in a spreadsheet

or relational database. A simple software shim can read the table

and evaluate the template over each row of arguments, thereby

producing parts of a building model. Abstracting template inputs

behind a table offers a familiar and more-easily understandable

interface to model authors.

Web forms: Templates may also be automatically transformed

into web forms, permitting interactive creation of semantic meta-

data models. This interface can be augmented by providing auto-

complete on inputs and continual model verification to reduce the

chance of mistakes.

4.3 Template Bodies
A template body 𝑇𝐺 is a connected RDF graph consisting of one or

more triples, at least one of which contains a parameter called name.
We require template bodies to be connected to ensure that any

composition of templates results in a connected graph. The name
parameter acts as a common join key for composing templates.

Consider the following template body containing four parame-

ters: name, x, y and z:

1 {name} a brick:VAV ;

2 brick:hasPoint {x}, {y} ;

3 brick:hasPart {z} .

The parameters x, y, and z relate to name in specific ways, but the

body itself does not give us any additional information on what

they might be. This can be mitigated in part by giving descriptive

names to the parameters (e.g., sat instead of x). Ultimately, ex-
plicit information about these parameters is contained within the

template’s dependencies 𝑇𝐷 , which will relate the name parameter

of each dependency template to a parameter in this dependent

template. Templates can also depend on each other using other

parameters beyond name.
To facilitate authoring and composing complex templates, we de-

velop a deterministic inlining algorithm that produces predictable

parameter names. This allows template authors to specify relation-

ships between recursively included dependencies. A full description

of the algorithm is beyond the scope of this paper.

Templates are nominally written as YAML documents with text-

serialized RDF graphs as the body (Figure 4), but we are also devel-

oping syntactic sugar for common patterns such as point lists.

We now describe how templates contribute to the process of

creating a semantically sufficient metadata model.

5 INCREMENTAL MODEL CREATION
By structuring both the metadata requirements of applications (via

shapes) and common graph patterns (via templates), it becomes

possible to optimize the model creation process by directing the

author’s effort towards adding the metadata that is the most useful

for the most applications. We begin by introducing an intuitive

but naïve approach to creating a semantic model, then introduce

three complementary optimizations that both reduce the manual

effort incurred by the author and increase the utility of intermediate

stages of model creation.

5.1 Naïve Template-Driven Model Creation
We describe basic workflow for creating semantic metadata models

using templates, as illustrated in Figure 5. First, a manifest must be

procured that guides the model creation process. Manifests may

come from anywhere, such as provided by a building owner or

facility manager to the model author, who may work for a system

integrator.

Given the manifest, the model author browses a set of libraries

for relevant templates. The search for templates is driven by both

the semantic requirements of the eventual model as well as the

author’s knowledge of what devices and configurations are actually

available in the target building. Once the author selects a template

they provide a set of bindings to evaluate the template into part of

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah Eslinger

Template

Library

Template

bldg:vav1

param

bldg:zone4-2zone

value
name

User-provided
Template Bindings

Template evaluation

Metadata
Model

Shape

Model validation Model storage

Choose
template

Store generated
subgraph

ShapeShape

Manifest

Choose
shapes

M(G) =
{true,
false}

Ite
rat

e

Figure 5: Using a library of shapes and templates to create
a metadata model and verify its semantic sufficiency with
respect to a manifest.

1 unit-with-occupancy:
2 body: >
3 {name} a brick:Terminal_Unit ;
4 brick:feeds {zone} .
5 dependencies:
6 - name: zone-with-occupancy
7 args: {"zone": "name"}
8 zone-with-occupancy:
9 body: >
10 {name} a brick:HVAC_Zone ;
11 brick:hasPoint {occ} .
12 dependencies:
13 - name: https://brickschema.org/schema/Brick#Occupancy_Sensor
14 library: https://brickschema.org/schema/1.3/Brick
15 args: {"occ": "name"}

Figure 6: Two templates for creating a terminal unit with an
occupancy sensor in its related zone.

the building metadata model. The model author may provide all

of the bindings required by the template, but may also leave some

of the template parameters blank if that information is not known

at that time. As an example, this may happen when the author is

modeling the HVAC system, but does not yet know the names of

the BMS points for the comprising devices.

The author merges the metadata model produced by this single

template evaluation into the existing building metadata model. The

author can then verify the semantic sufficiency of the model by

evaluating the manifest on the model. If the manifest is satisfied

(i.e.,𝑀 (𝐺) → true) then the author is done; otherwise, the author

must return to the template library to patch the model with missing

information. The author can also add semantic metadata to the

model directly without going through template evaluation. The

author repeats this iterative process until the metadata model is

semantically sufficient with respect to the manifest.

5.2 Subgraph Monomorphism Search
We first consider the problem of how to avoid redundant inputs

during template evaluation.When amodel author selects a template

to instantiate in a semantic model, there is a possibility that some

of the metadata produced by the template already exists within

the model. The model author must either query the existing model

for existing metadata that can be provided to the template, remem-

ber past inputs provided to previously instantiated templates, or

otherwise risk the inclusion of duplicate metadata.

Consider a model author attempting to instantiate the template

in Figure 6 and add the resulting graph to the Brickmodel in Figure 1.

To reduce the configuration burden on the model author, we wish

to determine how much of the unit-with-occupancy template

already exists within the model and remove the corresponding re-

dundant inputs from the template. This problem reduces to finding

subgraph monomorphisms of the building metadata model.

5.2.1 Preliminaries. To define subgraph monomorphisms, we re-

frame our semantic metadata models as directed, labeled graphs

𝐺 (𝑉 , 𝐸, 𝐿) where 𝑉 is the set of vertices (subjects and objects in
RDF), 𝐸 is the set of edges (predicates in RDF) and 𝐿 is the set of

labels on those components. A graph𝐺 ′(𝐸 ′,𝑉 ′, 𝐿′) is a subgraph of

𝐺 (𝐸,𝑉 , 𝐿) if 𝐸 ′ ⊆ 𝐸, 𝑉 ′ ⊆ 𝑉 and 𝐿′ ⊆ 𝐿. A node-induced subgraph

𝐺 ′
of 𝐺 has 𝑁 ′ ⊆ 𝑁 and 𝐸 ′ is the subset of edges in 𝐸 that relate

nodes in 𝑁 ′
. A subgraph monomorphism 𝐺 ′

of 𝐺 has 𝑁 ′ ⊆ 𝑁 and

𝐸 ′ is a subset of edges in 𝐸 that relate nodes in 𝑁 ′
.

We can now formally define the problem. Given a building graph

𝐺 and a template 𝑇 , our goal is to find the largest subgraphs of 𝐺

that are monomorphic to subgraphs of 𝑇 (specifically, 𝑇𝐵). These

subgraphs correspond to the parts of 𝑇 that already exist in the

building metadata graph and do not need to be re-evaluated by the

author. In our example above, the largest subgraph would be:

1 @prefix brick: <https://brickschema.org/schema/Brick#> .
2 @prefix ex: <urn:bldg#> .
3 ex:vav1 a brick:VAV ;
4 brick:feeds ex:zone1 .
5 ex:zone1 a brick:HVAC_Zone .

We also define the notion of semantic compatibility for comparing

nodes and edges in a graph. Two nodes are semantically compatible:

(1) If both nodes are owl:Class, then the nodes are semantically

compatible if one is a rdfs:subClassOf the other

(2) If both nodes are instances, then the nodes are semantically

compatible if their types are covariant

(3) If the nodes refer to the same entity (same IRI or value), then

they are semantically compatible

(4) Otherwise, the nodes are not semantically compatible

We use the notation SC(𝑛𝑖 , 𝑛 𝑗), 𝑛𝑖 , 𝑛 𝑗 ∈ 𝑉 to indicate that two nodes

are semantically compatible, and SC(𝑛𝑖 , 𝑛 𝑗), 𝑛𝑖 , 𝑛 𝑗 ∈ 𝑉 to indicate

that they are not. This definition generalizes easily for edges as

well as vertices by replacing the first condition with:

(1) If both edges are rdf:Property, then the edges are semanti-

cally compatible if one is a rdfs:subPropertyOf the other

and eliminating the second condition. Finally, if the first condition

is true for a pair of nodes or edges, then 𝑛𝑖 < 𝑛 𝑗 if one is a subclass

(or subproperty) of the other.

5.2.2 Search Algorithm. We can motivate the intuition of the algo-

rithm as follows. Consider first the set of subgraphs of 𝐺 that are

monomorphic to 𝑇 (not subgraphs of 𝑇). Each of these subgraphs

necessarily corresponds to a fully evaluated template; that is, each

node (parameter) in the template graph has a corresponding value

in the subgraph of 𝐺 . This is helpful for telling the user what is in

the building graph that already matches the template.

Application-Driven Creation of Building Metadata Models with Semantic Sufficiency BuildSys ’22, November 9–10, 2022, Boston, MA, USA

ShapeAuthor-
chosen

Template
bldg:vav1

param

bldg:zone4-2zone

value
name

Metadata
Model

Library

Model validation

Model storage

ShapeManifest

Report

ShapeInferred
Template

ShapeOptimized
Template

ShapeTriple
Input

Sequence

Template Optimization

§5.2

§5.4 §5.3

Author input

Figure 7: The optimized workflow for incremental model creation

Template Parameter Building Graph Node

{unit} ex:vav1
{zone} ex:zone1
{occ} N/A

Table 1: A monomorphism mapping between the templates
in Figure 6 and the model in Figure 1

It may be the case that there are parts of the building graph that

match part of a template, but still need some input to be complete.

To find those, we search for subgraphs of 𝐺 that are monomor-

phic to each subgraph of 𝑇 . If we find such a monomorphism, we

can then look at what nodes of 𝑇 are in the template, but not the

monomorphism. These “unbound” nodes correspond to the tem-

plate parameters that need additional input. Table 1 contains the

monomorphism mapping for our running example; note that the

occ parameter does not have a corresponding mapping and thus

requires input from the model author.

We adopt the VF2 algorithm [11] for finding subgraph monomor-

phisms, but wrap the execution of the algorithm in an additional

loop through all possible subgraphs of 𝑇 . Because the base VF2

algorithm only incorporates syntactic constraints that look at the

structure of the graph around a node, we additionally incorporate

optional semantic requirements for determining if two nodes are

semantically compatible. If two nodes are semantically compatible,

then they can be mapped to one another as part of a valid monomor-

phism. We use semantic compatibility checks to compare nodes

and edges in the model 𝐺 and the template body 𝑇𝐵 :

SC(𝑛𝑖 , 𝑛 𝑗), 𝑛𝑖 ∈ 𝐺,𝑛 𝑗 ∈ 𝑇𝐵

We use the subgraph monomorphism process to provide the

model author with a flavor of “autocomplete” when instantiating

templates to include in a metadata model. This reduces the number

of redundant inputs (there is no need to recreate a terminal unit

in the model when one with the correct name already exists) and

eliminates the need to manually search through a model for work

has already been done.

5.3 Greedy Incremental Template Evaluation
The model authoring processes described above assume that au-

thors evaluate templates in their entirety, without taking into ac-

count the priority or utility of those templates. This may require

authors to expend valuable effort inputting metadata that is only

required for a small number of applications, instead of metadata

that is used by a broader set of applications.

Here we introduce our second model creation optimization,

which adopts a greedy approach. Given a set of templates that

an author wishes to instantiate within a metadata model, our opti-

mization produces a sequence of metadata inputs that prioritizes

commonly-used metadata and postpones unique metadata that

only enables a handful of applications. Because template bodies are

graphs, this sequence takes the form as a list of RDF triples.

To generate this sequence, we first construct a histogram of

triples across all of the template bodies. Each bucket of the his-

togram contains triples that are semantically compatible. Two

triples 𝑡𝑎 = <𝑠𝑎, 𝑝𝑎, 𝑜𝑎> and 𝑡𝑏 = <𝑠𝑏, 𝑝𝑏, 𝑜𝑏> are seman-

tically compatible if their pairwise components are semantically

compatible, that is:

SC(𝑡𝑎, 𝑡𝑏) iff SC(𝑠𝑎, 𝑠𝑏) ∧ SC(𝑝𝑎, 𝑝𝑏) ∧ SC(𝑜𝑎, 𝑜𝑏)

Intuitively, this means that two triples appear in the same bucket

if they could be substituted into each other’s templates without

loss of correctness. The sequence of triples presented to the model

author is the most “specific” triple in each of the histogram buckets,

in decreasing order of bucket size. The most specific triple is the

minimum triple by the < operator defined in §5.2.1. This algorithm

ensures that a model author does not need to evaluate all of the sug-
gested templates in order to have a useful model. Certain prefixes

of the produced sequence will contain enough metadata to sup-

port certain applications. This algorithm also eliminates redundant

inputs between templates.

5.4 Incorporating Validation Feedback
Our last optimization closes the iterative loop in Figure 5 by infer-

ring from the semantic sufficiency check a set of templates whose

evaluation fixes the metadata model.

The semantic sufficiency check corresponds to the SHACL vali-

dation process [1]. Validation produces a report: an RDF graph that

contains a set of validation results. A result describes a condition

or constraint that was violated in the input graph and identifies

where in the graph that violation occurred (the target of the result).
Our approach groups the validation results by their target, and

then transforms the set of constraint violation descriptions into the

minimal template whose instantiation would reconcile the failed

constraint. This is possible because the SHACL standard defines

a common language for describing the violations; these can be

“inverted” into an RDF graph that becomes the generated template’s

body. The generated template incorporates the result target in its

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah Eslinger

definition so it is clear which part of the building model is being

edited. The body of the template contains parameterized triples

that reconcile all constraint violations for the corresponding target.

5.5 Optimized Incremental Model Creation
We now assemble the three optimizations above into an incremental

model creation workflow. The templates inferred from the semantic

sufficiency validation can be subject to the two optimizations above.

Figure 7 illustrates the application of the three optimizations above

to the base model creation process described in Figure 5.

First, the semantic sufficiency check produces a validation report.

Interpreting the validation report (§5.4) produces a set of reconcil-

ing templates. The subgraph monomorphism search method (§5.2)

transforms any author-provided templates into partially-evaluated

templates that account for existing metadata that is already in the

model. These two batches of templates can then be transformed

into a sequence of inputs (§5.3) that prioritizes the utility of inter-

mediate stages of model development. The workflow and the above

optimizations are generic to any RDF-based ontology.

6 EVALUATION
To evaluate the utility and efficacy of our proposed approach to

semantic model creation, we first analyze a public dataset of seman-

tic metadata models to verify that there is effort that can be saved.

Then, we present a case study constructing a metadata model to

support the deployment of advanced sequences of operation in a

standard reference building.

6.1 Measuring Redundant Graph Structures
The utility of the template-based approach to authoring metadata

models hinges on the amount of redundant structure within graphs

that can be automated away with templates. Here, we demonstrate

the potential utility of our approach by measuring the frequency

of redundant structures in a public dataset of 46 Brick models from

the Mortar testbed [16].

To simplify this task, we consider a common motif in building

metadata models: an entity and its immediate properties and rela-

tionships. Examples of this motif include: a thermostat, its location

and its related points; a room, its area, volume, and associated floor

and HVAC zone. We call this pattern an entity’s “neighborhood”.

For each graph, we determine the set of entities by querying the

graph for all instances of Brick classes. We calculate the neighbor-

hood for each entity by first retrieving the diameter-2 subgraph

rooted at the entity (i.e., all of the triples for which the entity is

the subject). We then rewrite this graph by aggregating nodes by

their types in order to produce a “class graph” of the entity’s neigh-

borhood. We use the graph isomorphism algorithm described in

[26] to determine if two class graphs are equivalent. We apply this

process to all of the graphs in the Mortar dataset to compute the

histogram of isomorphic class graph frequency within each graph.

Figure 8 illustrates the distribution of distinct motifs of a given

size across the Mortar dataset. This figure does not include motifs

with fewer than 4 triples to focus on the potential of motifs to

generate larger portions of a metadata model. We can draw two

conclusions from the distribution. First, there are a large number

of distinct motifs that could be represented as templates. Second,

Figure 8: The frequency ofmotifs with at least 4 triples across
the Mortar dataset. There are 564 motifs of size 3.

Figure 9: Cumulative proportion of each model that can be
represented as neighborhood motifs of at most a given size

21% of the distinct “neighborhood” motifs are at least 4 triples. This

suggests that such nontrivial motifs could dramatically simplify

creating models of complex entities.

Figure 9 shows the cumulative proportion of each model in the

Mortar dataset that can be represented by motifs of at most a given

size. The results demonstrate that at most 80% of Mortar Brick

models can be represented as neighborhood motifs (considering

more kinds of motifs will raise this number). The figure also shows

that there is no easy determination of how much of a model can be

made composed of motifs of a given size. For some models, small

motifs (4 or fewer triples) will make up more than 40% of the graph;

other models require a broader range of motifs. Metadata models

have many different kinds of redundancy that are not always easily

characterized. This motivates the need for an approach such as ours

that can take advantage of structural and semantic redundancy in

a model to reduce the authoring effort.

6.2 Removing Redundant Inputs
Having demonstrated the potential utility of our approach, we not

evaluate the ability of the proposed approach to reduce redundant

inputs during model creation. We consider manual, from-scratch
model creation as our baseline; despite the need formodel authoring

tools, metadata models are still created manually in current practice.

An input is a piece of information input by the model author.

This may be the name of an equipment or device, the engineering

units for a point, the relationship between a terminal unit and a

zone, or any other node or edge in a metadata model. Specifically,

the author-provided inputs for a model consist of: (a) the names of

entities in the model (each triple containing an entity counts as a

different input), and (b) the edges that connect to or from an entity.

Application-Driven Creation of Building Metadata Models with Semantic Sufficiency BuildSys ’22, November 9–10, 2022, Boston, MA, USA

1 @prefix brick: <https://brickschema.org/schema/Brick#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix constraint: <anonymized-for-review> .
4 @prefix sh: <http://www.w3.org/ns/shacl#> .
5 @prefix g36: <https://data.ashrae.org/nonexistent/guideline36> .
6 @prefix : <urn:medium-office-brick-constraints/> .
7 # metadata referencing external libraries and concepts
8 : a owl:Ontology ;
9 owl:imports <https://brickschema.org/schema/1.3/Brick> ;
10 owl:imports <https://data.ashrae.org/nonexistent/guideline36> .
11 :ahu-count a sh:NodeShape ;
12 sh:message "The model must contain exactly 3 AHUs" ;
13 sh:targetNode : ; # indicates a reference to the current model
14 constraint:exactCount 3 ; constraint:class brick:AHU . # custom constraint
15 :ahu-feeds-rvavs a sh:NodeShape ;
16 sh:message "AHUs feed 5 VAVs; all VAVs must support G36 SOO 4.1" ;
17 sh:targetClass brick:AHU ;
18 sh:property [
19 sh:path brick:feeds ; sh:class g36:vav-with-reheat ;
20 sh:minCount 5 ; sh:maxCount 5] .

Figure 10: A simple manifest for creating a Brick model of
the DOE Medium Commercial Office reference building.

To evaluate the ability of our proposed system to reduce author

inputs and maximize the utility of the resulting metadata model, we

consider a case study of creating a Brick model for the Department

of Energy’s Medium Office Commercial Reference Building [12].

The reference building contains three multi-zone AHUs, each of

which feeds a number of VAV terminals with reheat (VAVRs). shFor

the evaluation, we construct a manifest specifying that all VAVRs

must support the relevant Guideline 36 (G36) sequence of opera-

tions [17] (Figure 10). The manifest contains two shapes; one for the

two constraints above. The shapes are simple because they import

pre-defined shapes from an external library. For clarity, we also

require the model to have five VAVRs per AHU (this is not specified

in the reference building definition).

We compare the number of required author inputs across five

modeling scenarios. In these description, the existing model is a

Brick model containing the declarations of AHUs and RVAVs, but

none of their properties, points or relationships.

(1) naïve, manual model creation, from scratch

(2) naïve, manual model creation, from existing model

(3) using a provided G36 template for VAVRs, no existing model

(4) using a provided G36 template for VAVRs, from existing

model

(5) using templates inferred from the existing model

The results of this investigation are in Table 2. The baseline of 303

author inputs (row 1) incorporates names of AHUs, VAVRs, their

points, and knowledge of which AHUs are connected to which

VAVRs. If the model author chooses to create the model from the

Guideline 36 template provided as part of our reference implemen-

tation, they only need to provide 158 inputs. These inputs are also

scaffolds: they tell the author exactly what needs to be provided.

The final two rows have the same number of inputs but corre-

spond to very different model development experiences. In the first

(row 4), the author manually chooses the template to be instan-

tiated in the model and uses the monomorphism search (§5.2) to

pre-populate those templates with existing information. In the last

row (row 5), the author uses the validation report to automatically

determine the missing semantic information with respect to the

manifest (Figure 10) and infer a set of templates (§5.4). This does not

Modeling Approach # Inputs % Red.

Manual creation, from scratch 303 0%

Manual creation, from existing model 285 6%

Existing templates, from scratch 158 52%

Existing templates, from existing model 140 54%

Inferred templates, from existing model 140 54%

Table 2: The number of author-provided inputs required to
create the medium office reference building model using
each of the proposed techniques and optimizations. The last
column records the % reduction in the number of inputs
compared to manual model creation.

require any familiarity with the available templates, but prompts

the author for the same information.

From these results we can conclude that the proposed techniques

reduce the number of required author inputs and make effective

use of existing information in the model and manifest.

7 IMPLEMENTATION
We have constructed reference implementations of templates (§4),

shapes (§3) and the model creation workflow (§5) to encourage

community involvement and to promote further innovation. The

implementation is open source, permissively licensed, and is avail-

able online: https://github.com/NREL/BuildingMOTIF. The refer-

ence implementation takes the form of a software development

kit (SDK) designed to be integrated into other user-facing pieces

of software. The SDK provides APIs for storing, managing, and

verifying collections of templates, shapes, and metadata models; it

also implements the iterative model creation workflow (§5).

The SDK is agnostic to the source of metadata. We envision

the SDK complementing existing metadata ingestion tools that

infer metadata from BMS point labels [10, 20] or translate from

existing digital representations such as BIM, energy audits, or other

semantic metadata models [15].

The ability to create, share, and exchange templates and shapes

is critical to creating an ecosystem that encourages and rewards

investment from the broader community. To encourage distribution

and reuse, we group templates and shapes together into libraries.
Libraries have globally unique names (such as a DOI or URI) to

facilitate organization and to enable cross-library references.

Cross-library references allow templates or shapes in one library

to refer to templates or shapes in another library as dependencies.

This allows library authors to incorporate existing templates and

avoid redefining (potentially complex) base concepts, thus encour-

aging the reuse of such specifications. External template references

can be done by including a library key in a template’s dependen-

cies (Figure 4). External shape references can be done by referring

to the URI of the dependency shape.

We have implemented some libraries to prove out their utility and

expressiveness. Our reference implementation includes a library

containing system configurations and equipment types defined in

ASHRAE Guideline 36. The library includes templates and shapes

for variable air volume boxes in both cooling-only and reheat con-

figurations and several different air handler unit configurations.

Each of these templates corresponds directly to fault detection

algorithms also defined in Guideline 36.

https://github.com/NREL/BuildingMOTIF

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah Eslinger

8 CONCLUSION
In this paper we have introduced semantic sufficiency, a new ap-

proach to creating semantic metadata models that uses formal

descriptions of application requirements to inform an incremental

model creation workflow that directs author effort towards useful

metadata models. We also introduce and formalize templates, which
automate the construction of common patterns within metadata

models. These contributions lower the barrier to adoption of seman-

tic metadata models, ultimately helping to enable the widespread

deployment of intelligent building applications.

ACKNOWLEDGMENTS
This work was authored by the National Renewable Energy Labo-

ratory, operated by Alliance for Sustainable Energy, LLC, for the

U.S. Department of Energy (DOE) under Contract No. DE-AC36-

08GO28308. Funding provided by U.S. Department of Energy Office

of Energy Efficiency and Renewable Energy Building Technologies

Office, specifically through the Semantic Interoperability Research

and Development project, CPS agreement number 34579. The views

expressed in the article do not necessarily represent the views of the

DOE or the U.S. Government. The U.S. Government retains and the

publisher, by accepting the article for publication, acknowledges

that the U.S. Government retains a nonexclusive, paid-up, irrev-

ocable, worldwide license to publish or reproduce the published

form of this work, or allow others to do so, for U.S. Government

purposes. We also thank Cory Mosiman and Austin Viveiros for

their early contributions to this work.

REFERENCES
[1] 2017. Shapes constraint language (SHACL). Technical Report. W3C. https:

//www.w3.org/TR/shacl/

[2] 2021. Project Haystack. http://web.archive.org/web/20210111211811/https://

project-haystack.org/

[3] 2022. Data Clearing House. https://web.archive.org/web/20220728042356/https:

//dataclearinghouse.org/

[4] American Society of Heating, Refrigerating and Air-Conditioning Engi-

neers. 2018. ASHRAE’s BACnet Committee, Project Haystack and Brick

Schema Collaborating to Provide Unified Data Semantic Modeling Solution.

http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/

news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-

collaborating-to-provide-unified-data-semantic-modeling-solution.

[5] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,

Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal,

Mario Berges, David Culler, Rajesh Gupta, Mikkel Baun Kjærgaard, Mani Sri-

vastava, and Kamin Whitehouse. 2016. Brick: Towards a Unified Metadata

Schema For Buildings. In Proceedings of the 3rd ACM International Confer-
ence on Systems for Energy-Efficient Built Environments (Palo Alto, CA, USA)

(BuildSys ’16). Association for Computing Machinery, New York, NY, USA, 41–50.

https://doi.org/10.1145/2993422.2993577

[6] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah

McGuinness, Peter Patel-Schneijder, and Lynn Andrea Stein. 2004. OWL Web
Ontology Language Reference. Recommendation. World Wide Web Consortium

(W3C). See http://www.w3.org/TR/owl-ref/.

[7] Harry Bergmann, Cory Mosiman, Avijit Saha, Selam Haile, William Livingood,

Steve Bushby, Gabe Fierro, Joel Bender, Michael Poplawski, Jessica Grander-

son, and Marco Pritoni. 2020. Semantic Interoperability to Enable Smart, Grid-

Interactive Efficient Buildings. (12 2020). https://doi.org/10.20357/B7S304

[8] Keith Berkoben, Charbel El Kaed, and Trevor Sodorff. 2020. A Digital Buildings

Ontology for Google’s Real Estate.. In ISWC (Demos/Industry). 392–394.
[9] Arka Bhattacharya, Joern Ploennigs, and David Culler. 2015. Short paper: An-

alyzing metadata schemas for buildings: The good, the bad, and the ugly. In

Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments. 33–34.

[10] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse,

and Eugene Wu. 2015. Automated metadata construction to support portable

building applications. In Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments. 3–12.

[11] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2001.

An improved algorithm for matching large graphs. In 3rd IAPR-TC15 workshop
on graph-based representations in pattern recognition. Citeseer, 149–159.

[12] M Deru, K Field, D Studer, K Benne, B Griffith, P Torcellini, M Halverson, D

Winiarski, B Liu, M Rosenberg, et al. 2010. DOE Commercial Reference Building

Models for Energy Simulation–Technical Report. National Renewable Energy
Laboratory: Golden, CO, USA (2010).

[13] US EIA. 2082. Commercial buildings energy consumption survey. United Sates
Department of Energy (2082).

[14] Gabe Fierro and Pieter Pauwels. 2022. Survey of metadata schemas for datadriven
smart buildings (Annex 81). CSIRO, Australia.

[15] Gabe Fierro, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul

Raftery, Michael Wetter, and David E Culler. 2020. Shepherding metadata through

the building lifecycle. In Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation. 70–79.

[16] Gabe Fierro, Marco Pritoni, Moustafa AbdelBaky, Daniel Lengyel, John Leyden,

Anand Prakash, Pranav Gupta, Paul Raftery, Therese Peffer, Greg Thomson, et al.

2019. Mortar: an open testbed for portable building analytics. ACM Transactions
on Sensor Networks (TOSN) 16, 1 (2019), 1–31.

[17] GUIDELINE 36-2021 2021. High-Performance Sequences Of Operation For
HVAC Systems. Standard. American Society of Heating, Refrigerating and Air-

Conditioning Engineers.

[18] Karl Hammar, Erik Oskar Wallin, Per Karlberg, and David Hälleberg. 2019. The

realestatecore ontology. In International Semantic Web Conference. Springer, 130–
145.

[19] Fang He, Yang Deng, Yanhui Xu, Cheng Xu, Dezhi Hong, and Dan Wang. 2021.

Energon: A Data Acquisition System for Portable Building Analytics. In Pro-
ceedings of the Twelfth ACM International Conference on Future Energy Systems.
15–26.

[20] Jason Koh, Dezhi Hong, Rajesh Gupta, Kamin Whitehouse, Hongning Wang,

and Yuvraj Agarwal. 2018. Plaster: An integration, benchmark, and develop-

ment framework for metadata normalization methods. In Proceedings of the 5th
Conference on Systems for Built Environments. 1–10.

[21] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. 2012. Building

application stack (BAS). In Proceedings of the Fourth ACMWorkshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings. 72–79.

[22] Henrik Lange, Aslak Johansen, and Mikkel Baun Kjærgaard. 2018. Evaluation

of the opportunities and limitations of using IFC models as source of building

metadata. In Proceedings of the 5th Conference on Systems for Built Environments.
21–24.

[23] Ora Lassila, Ralph R Swick, et al. 1998. Resource description framework (RDF)

model and syntax specification. (1998).

[24] Shuheng Li, Dezhi Hong, and Hongning Wang. 2020. Relation Inference among

Sensor Time Series in Smart Buildings with Metric Learning. Proceedings of the
AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020), 4683–4690. https:

//doi.org/10.1609/aaai.v34i04.5900

[25] Nicholas Long, Katherine Fleming, Christopher CaraDonna, and Cory Mosi-

man. 2021. BuildingSync: A schema for commercial building energy audit data

exchange. Developments in the Built Environment 7 (2021), 100054.
[26] James P McCusker. 2015. WebSig: a digital signature framework for the web.

Rensselaer Polytechnic Institute.

[27] Jyrki Oraskari, Madhumitha Senthilvel, and Jakob Beetz. 2021. SHACL is for LBD

what mvdXML is for IFC. In Proc. of the Conference CIB W78, Vol. 2021. 11–15.
[28] Marco Pritoni, Drew Paine, Gabriel Fierro, Cory Mosiman, Michael Poplawski,

Avijit Saha, Joel Bender, and Jessica Granderson. 2021. Metadata Schemas and

Ontologies for Building Energy Applications: A Critical Review and Use Case

Analysis. Energies 14, 7 (Apr 2021), 2024. https://doi.org/10.3390/en14072024

[29] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for

RDF. W3C Recommendation. http://www.w3.org/TR/rdf-sparql-query/ http:

//www.w3.org/TR/rdf-sparql-query/.

[30] Rasmussen, Lefrançois, Schneider, and others. 2021. BOT: the building topology

ontology of the W3C linked building data group. Semant. Web (2021).
[31] Zixiao Shi, Guy R Newsham, Long Chen, and H Burak Gunay. 2019. Evaluation

of clustering and time series features for point type inference in smart building

retrofit. In Proceedings of the 6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation. 111–120.

[32] Martin G Skjæveland, Henrik Forssell, Johan W Klüwer, Daniel Lupp, Evgenij

Thorstensen, and Arild Waaler. 2019. Pattern-based ontology design and instan-

tiation with reasonable ontology templates. A Higher-Level View of Ontological
Modeling 69 (2019).

[33] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. 2013. Buildingdepot

2.0: An integrated management system for building analysis and control. In

Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient
Buildings. 1–8.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
http://web.archive.org/web/20210111211811/https://project-haystack.org/
http://web.archive.org/web/20210111211811/https://project-haystack.org/
https://web.archive.org/web/20220728042356/https://dataclearinghouse.org/
https://web.archive.org/web/20220728042356/https://dataclearinghouse.org/
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://doi.org/10.1145/2993422.2993577
http://www.w3.org/TR/owl-ref/
https://doi.org/10.20357/B7S304
https://doi.org/10.1609/aaai.v34i04.5900
https://doi.org/10.1609/aaai.v34i04.5900
https://doi.org/10.3390/en14072024
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Abstract
	1 Introduction
	2 Background and Prior Work
	3 Semantic Sufficiency
	3.1 Preliminaries
	3.2 Application Requirements
	3.3 Model Verification
	3.4 Discussion

	4 Templates
	4.1 Preliminaries
	4.2 Template Usage
	4.3 Template Bodies

	5 Incremental Model Creation
	5.1 Naïve Template-Driven Model Creation
	5.2 Subgraph Monomorphism Search
	5.3 Greedy Incremental Template Evaluation
	5.4 Incorporating Validation Feedback
	5.5 Optimized Incremental Model Creation

	6 Evaluation
	6.1 Measuring Redundant Graph Structures
	6.2 Removing Redundant Inputs

	7 Implementation
	8 Conclusion
	Acknowledgments
	References

