
Systematic Evaluation of Knowledge Graph
Repair with Large Language Models

Tung-Wei Lin1,2, Gabe Fierro3,4, Han Li2, Tianzhen Hong2, Pierluigi Nuzzo1,
and Alberto Sangiovanni-Vinentelli1

1 UC Berkeley, USA
{twlin, nuzzo, alberto}@eecs.berkeley.edu,
2 Lawrence Berkeley National Laboratory, USA

{hanli, THong}@lbl.gov
3 National Renewable Energy Laboratory, USA

4 Colorado School of Mines, USA
gtfierro@mines.edu

Abstract. We present a systematic approach for evaluating the quality
of knowledge graph repairs with respect to constraint violations defined
in shapes constraint language (SHACL). Current evaluation methods rely
on ad hoc datasets, which limits the rigorous analysis of repair systems in
more general settings. Our method addresses this gap by systematically
generating violations using a novel mechanism, termed violation-inducing
operations (VIOs). We use the proposed evaluation framework to assess
a range of repair systems which we build using large language models.
We analyze the performance of these systems across different prompting
strategies. Results indicate that concise prompts containing both the rel-
evant violated SHACL constraints and key contextual information from
the knowledge graph yield the best performance.

Keywords: Shapes Constraint Language · Knowledge Graph Repair ·
Large Language Models · Brick Models

1 Introduction

Knowledge graphs (KGs) are structured representations of information that en-
code directed relationships between labeled entities. They excel at representing
domain-specific knowledge and serve as machine-readable reference databases
for diverse applications, including smart building management [9], genome clus-
tering [47], and general knowledge bases such as Wikipedia [42]. More recently,
KGs have also been used for automatic software configuration and remote data
access [19,36].

KGs are populated using a variety of techniques, including manual cura-
tion [11], automated translation from existing databases, and extraction from
unstructured text [10]. Users rely on the correctness and completeness of KGs to
support downstream tasks. Machine learning models, including language mod-
els, extract facts from KGs for tasks such as query generation [17] and question

ar
X

iv
:2

50
7.

22
41

9v
1

 [
cs

.D
B

]
 3

0
Ju

l 2
02

5

https://arxiv.org/abs/2507.22419v1

2 T.W. Lin et al.

answering [45]. Large KGs like Wikidata [42] and YAGO [41] facilitate search
by linking real-world entities to their attributes. Cyber-physical KGs, built with
ontologies such as Brick [9] and RealEstateCore [24], enable digital twins and
automatic configuration of fault detection and control. Reference ontologies like
QUDT [15] document physical constants and engineering units. As structured,
factual, and symbolic repositories, KGs require rigorous validation to ensure
their reliability.

The Shapes Constraint Language (SHACL) [32], recently standardized by
W3C [4], enables the specification and validation of Resource Description Frame-
work (RDF) KGs [1] against sets of constraints called shapes. The validation
report obtained after validating a KG against SHACL shapes details which con-
straints were violated on which KG nodes but provides limited feedback on
how to repair these violations. Existing repair methods often combine manual
intervention with domain-specific heuristics [44,20,19,5], or depend on access to
KG editing history [33,34,16]. The absence of comprehensive benchmarks further
complicates the evaluation and advancement of automatic KG repair techniques.

This paper introduces a systematic framework to evaluate KG repair sys-
tems using SHACL validation reports. Existing evaluation methods are limited,
since they either focus on datasets with editing history, such as Wikidata [42],
or small, manually curated benchmarks like the SHACL test suite [22]. The ad
hoc nature of these datasets datasets limits fine-grained analysis of repair sys-
tem performance. Instead, we look for accurate characterizations of KG repair
systems that can also help understand how these systems behave on new and
unseen graphs and constraints. We propose a novel evaluation method that sys-
tematically generates SHACL violations through violation-inducing operations
(VIO), for which correct fixes are known. We can then evaluate repair methods
across many different types of violations and repairs on arbitrary KGs.

Using this framework, we investigate the use of large language models (LLMs)
for KG repair. We argue that LLMs offer three key advantages. First, LLMs
embed domain knowledge, potentially enabling better heuristics for repair sug-
gestions. Techniques like retrieval-augmented generation [49] can also incorpo-
rate external facts to support repairs. Second, LLMs have demonstrated success
in pattern matching [31], suggesting they can synthesize repairs from complex
SHACL constraints without the extensive programming required by existing
techniques. Third, the multi-step problem-solving capabilities of agentic LLM
systems [46] may enable more sophisticated repairs than prior approaches. Our
contributions can be summarized as follows:

– We introduce and formalize violation-inducing operations, which systemati-
cally enumerate all violations on a KG with respect to a set of SHACL shapes.

– We propose a VIO-based method for generating datasets of SHACL violations.
The generation method provides a high degree of control over the size and
shape, or constraint, coverage for evaluating repair systems.

– We present a generic LLM-based KG repair method and evaluate it on three
real-world KGs and four commercial and open-source LLMs.

Title Suppressed Due to Excessive Length 3

The proposed framework enables the systematic evaluation of KG repair sys-
tems by generating datasets with high degree of control over which violations
occur and which repairs are necessary to fix the violations. We can then charac-
terize KG repair systems based on the kinds of repairs they can make and how
accurate they are. We can also vary the size of generated datasets to measure
the scaling performance of a repair system for metrics like cost and computation
time. We demonstrate the use of the framework to analyze the performance of
LLM-based KG repair systems by prompting strategy and choice of model.

2 Background and Related Work

KGs are essential for a wide range of applications, but they are expensive to
create and maintain. They can be developed through expert-driven manual de-
sign [47,9], data mining and representation learning techniques [29,10], auto-
mated translation from existing sources [18,37], or a combination of these meth-
ods. Regardless of how they are constructed, KGs require post-processing and
verification to ensure their correctness and completeness [30]. These qualities
are typically enforced through compliance checking against domain-specific con-
straints, which define permissible KG statements. A validation process detects
violations of these constraints. In this paper, we focus on methods that repair
such violations to restore compliance. In contrast, KG completion aims to predict
missing knowledge rather than address constraint violations [28,43,39].

2.1 Shapes Constraint Language (SHACL)

SHACL [32] is a formal specification language to ensure data quality in KGs. A
SHACL validation engine such as pySHACL [13] checks whether a KG conforms
to a set of specifications, called manifest. After validation, the engine produces a
report that identifies constraint violations and can be used to guide subsequent
repairs. However, these reports typically provide only minimal information, leav-
ing users to determine how best to address the violations. This presents a major
challenge, as there are many ways to repair a violation.

Similar to database repair [40], one approach is to simply remove inconsis-
tent data, but this risks discarding valuable information. Other methods [5,6]
compute repairs with minimal cardinality to preserve as much information as
possible. However, minimal cardinality edits, or other symbolic heuristic meth-
ods like BuildingMOTIF [20], are not always sufficient to determine the best
repair. A significant reason is that these methods cannot consider information
beyond what is representable as symbols in the graph; lexical information and
domain information are not available to guide the repair process.

2.2 KG Repair Systems

A KG repair process must enumerate a set of possible repairs given a set of
violated constraints. These constraints can be considered individually [44,7] or

4 T.W. Lin et al.

in groups [5,20,16]. Methods for generating KG repairs vary in the degree of
human or expert knowledge they incorporate, in addition to learning from past
repairs or incorporating external reference knowledge. Schimatos [44] implements
a user interface for manual repair of the KG, and Pellissier et al. [33] and Fan et
al. [16] learn repairs from logs of past repairs, which include both automated and
manual repairs. BuildingMOTIF [20] uses expert-derived heuristics to suggest
repairs based on domain knowledge in the smart building domain, while Ahmetaj
et al. [5] generate sets of possible repairs using answer set programming.

After generating a set of possible repairs, a process must choose which repairs
to apply to the KG. Methods based on direct or historical manual input [44,7]
have the benefit of human knowledge or user confirmation, which are deemed
to lead to high-quality repairs. Automated techniques [5,19,7,34] often rely on
heuristics or quantifiable metrics to choose the “best” repair, e.g., by choosing
the minimal cardinality fix [5] or custom heuristics to rank fixes based on the
amount of information they add to the KG [7,20].

KG repair methods also differ in the kinds of repairs they can generate, es-
pecially with respect to whether a repair can include information that is already
present in the KG but not in the validation report. Ahmetaj et al. [5] generate
fresh values to repair violations of existential constraints that complain about
missing values. Others [7,34,44,20] can all suggest repairs that incorporate infor-
mation that is already in the KG.

Our investigation of LLMs for SHACL-based KG repair addresses the preva-
lent role of expert-curated heuristics in producing and prioritizing graph repairs.
Purely symbolic methods [5] are limited in their ability to assess the appropriate-
ness of heuristics such as minimal cardinality, particularly when lacking access to
semantic cues such as naming patterns in the KG. Manual methods [44] cannot
scale to large numbers of fixes. The remaining heuristic methods discussed above
cannot be proven to generalize to the possible repairs required by a KG, nor can
they easily differentiate between symbolically similar but semantically different
scenarios. LLMs, by contrast, can memorize domain facts and capture relation-
ships between them, enabling strong performance on different language-based
tasks [27,12]. They may act as substitutes for the combinations of heuristics and
constraint solvers for KG repair. This paper proposes initial benchmarks and a
methodology for evaluating the performance of LLMs on repair tasks.

3 Evaluation Framework for LLM-Based KG Repair

We posit that LLMs can enhance KG repair with natural language processing
and domain-specific understanding. LLM-based repair systems could automate
SHACL repairs, making SHACL easier for practical use. They could integrate
symbolic reasoning components, such as a logic programming solver, with a
semantic component that considers domain-specific information. However, re-
search on such KG repair systems hinges on accurate evaluation frameworks
with rigorous metrics, a gap we aim to fill.

Title Suppressed Due to Excessive Length 5

Invalid
Graph heyG’

Validation
Report generate

Repair System
Can include LLMs,
logic solvers, and
knowledge basesRepair π

Evaluation of #
1. Whether # is parsed without error
2. Whether # eliminates the violation

3. Whether # reverts the VIO
4. How much it costs to generate #

Apply Repair

Proposed
formalism for

automatic VIO
generation

Apply VIO
VIO

VIO
VIO

VIO

G

For each
VIO

π

SHACL
Validator

SHACL Validation

G’
S

G’
Repaired Knowledge

Graph heyG!’ S G’ Γ(G’,S) Γ(G’,S)

SHACL
Manifest S

Valid Knowledge
Graph G

Fig. 1: The proposed evaluation framework. The shaded blocks are our
main contributions.

In this section, we outline our automated test-case generation methodology
for KG repair systems and the corresponding evaluation metrics. As illustrated
in Fig. 1, the evaluation framework takes a SHACL manifest S and a valid
KG G (free of violations) and generates a set of VIOs, represented as SPARQL
operations [2], such as addition (add(·)) and removal (remove(·)) operations.
Each VIO is applied on a copy of G, resulting in an invalid KG G′. Each pair of S
and G′ constitutes a test case for the repair system. After validating G′ against
S, we obtain a validation report. The report along with G′ and S is used by
the repair system to generate a repair π, represented as add(·) and remove(·)
SPARQL operations. Applying π to G′ yields a repaired KG G′

π. We assess the
repair using several metrics: First, π should be parsed without error. Second, π
should eliminate the violation, i.e., G′

π should be free of violations when validated
against S. Third, π should revert the VIO and recover the original KG G. Finally,
π should be cost-efficient to generate.

The evaluation framework treats the repair system as a black box, requiring
no internal knowledge to generate validation datasets. We showcase the proposed
evaluation framework on a family of prototype LLM-based repair systems that we
build since existing repair methods either involve human intervention [44,20,19],
require editing history [33,34,16] or output sets of repairs [5]. We evaluate several
LLM prompt templates to measure the impact of different pieces of information
on the performance of the repair system. Our results demonstrate the utility of
our evaluation framework for designing repair systems and provide insights into
effective prompting strategies for LLM-based SHACL repair.

4 Generation of Violation-Inducing Operations

We begin by introducing key concepts for the VIO generation algorithm, using
the running example in Fig. 2. Fig. 2a specifies that papers must be reviewed by
at least one and at most three qualified reviewers, defined as professors who are
also committee members. Fig. 2b presents a knowledge graph that satisfies these

6 T.W. Lin et al.

:PaperShape a sh: NodeShape;
sh: targetClass ex: Paper;
sh: property :ReviewedByShape.

:ReviewedByShape a sh: PropertyShape;
sh: path ex: reviewedBy;
sh: qualifiedValueShape :ReviewerShape;
sh: qualifiedMaxCount 3;
sh: qualifiedMinCount 1.

:ReviewerShape a sh: NodeShape;
sh: targetNode ex: Dan;
sh: class ex: Professor ,

ex: CommitteeMember.

Fig. 2 (a) SHACL manifest S

ex: PaperABC a ex: Paper;
ex: reviewedBy ex: Alice , ex: Bob ,

ex: Clark;
ex: author ex: Ethan.

ex: PaperA a ex: Paper;
ex: reviewedBy ex: Alice.

ex: Alice a ex: Professor ,
ex: ComitteeMember.

ex: Bob a ex: Professor ,
ex: ComitteeMember.

ex: Clark a ex: Student.
ex: Dan a ex: Professor ,

ex: ComitteeMember.

Fig. 2 (b) Knowledge graph G

constraints, modeling the relationships between two papers—ex:PaperABC and
ex:PaperA—and their respective reviewers and authors.

4.1 Preliminaries

Definition (Knowledge Graph). A knowledge graph G(V, E) consists of nodes
V and edges E . A triple (u, e, v) ∈ G iff u, v ∈ V and e ∈ E .
Definition (SHACL Manifest). The SHACL manifest S consists of two dis-
joint sets of shapes, namely, node shapes and property shapes. A shape is a tuple,
Σs = ⟨s, τs, µs, κs⟩ ∈ S, where s is the unique shape name of Σs. τs : G → 2V5

is the targeting function that produces the set of focuses to be validated against
s. For example, in Fig. 2, τ:PaperShape = {ex:PaperABC, ex:PaperA}, as declared
by the sh:targetClass predicate. µs : V → 2V is the value mapping function,
which, for a given node v, returns the set of values that are evaluated during the
validation of v. For a node shape, µs(v) produces a singleton set with v being
the only member. For a property shape, µs(v) produces the set of nodes in G
that can be reached from v with the path mapping ps of s (i.e., the parame-
ter value of sh:path). For example, µ:ReviewedByShape(ex:PaperA) = {ex:Alice}.
κs = {κis = (ξis, ω

i
s) | i ∈ Is} is the set of pairs of SHACL constraints and

their parameter values. The permissible data type of ωis depends on the cor-
responding constraint ξis. For example, if ξis = sh:class, then ωis is a class
name. Is = {1, · · · , ns} is the index set for the constraints of s and ns is the
number of constraints in s. For example, n:PaperShape = 1 and κ:PaperShape =
{κ1:PaperShape = (sh:property, :ReviewedByShape)}. On the other hand, ωis is
the name of another shape if and only if κis and ξis are shape-based. In this case,
there exists a shape Σωi

s
= ⟨ωis, τωi

s
, µωi

s
, κωi

s
⟩. If there exists j such that κjωi

s
is

shape-based, then Σωi
s

and Σωj

ωi
s

are both part of the dependency of Σs. For ex-

ample, Σ:ReviewedByShape and Σ:ReviewerShape are in the dependency of Σ:PaperShape.
Definition (Validation Semantics). The SHACL standard defines a valida-
tion function Γ (v, κis) that takes a node v ∈ V and the i-th constraint κis of s and
maps them to a validation result ρis,v ∈ R, where R is the set of all possible val-
idation results, R′, augmented with the empty result, i.e., R = R′ ∪{∅}. Γ uses
the value mapping function µs to find the set of value nodes µs(v) and produce

5 2V denotes the power set of V, the set of all possible subsets of V

Title Suppressed Due to Excessive Length 7

ρis,v ̸= ∅ if v violates κis. In that case, s is called the source shape, κis is called
the source constraint, and v is called the focus of the result ρis,v. Otherwise, if
ρis,v = ∅, we say that v satisfies κis, denoted by v |= κis. Furthermore, we say

v |= Σs if ∀i ∈ Is, v |= κis and G |= S if ∀Σs ∈ S,∀v ∈ τs(G), v |= Σs.

We abuse the notation Γ (G,S) to express the set of validation results of G against
a manifest S, which is also called the validation report.

Given a KG G that satisfies a manifest S, we design an algorithm that gen-
erates a set of VIOs. A VIO(κis,F) takes the i-th constraint of s and a set of
focus nodes F and maps them to a set of SPARQL operations. VIO(κis,F) is
defined to be shape-based if and only if κis is shape-based.
Running Example. Fig. 2 shows a manifest S and a KG G that satisfies S.
VIOs of non-shape-based constraints (such as sh:class) correspond to straight-
forward edits. Handling shape-based constraints such as sh:property requires
recursively resolving and violating the nested constraints. In the following sec-
tion, we introduce an abstract rewriting system [26] that expands shape-based
VIOs into non shape-based ones.

4.2 Abstract Rewriting System

We define the rewriting objects of the rewriting system A = (Expr,→).

Term ::= VIO(κis,F) | Term · Term, Expr ::= Term | Expr+ Term,

where · represents simultaneous application (analogous to logical and), and +
represents alternative application (analogous to logical or). The arrow (→) de-
notes a set of rewrite rules that transforms the left-hand object into the right-
hand object. An object is said to be in normal form (or is normalized) if no
rewrite rules can be applied. The system is strongly normalizing if every ob-
ject can be normalized in finitely many steps; that is, every rewriting sequence
terminates. Repeated application of the rewrite rules to objects in A produces
an expansion tree: each expression corresponds to a node, with leaf nodes rep-
resenting normalized expressions, and internal nodes representing expressions
with shape-based VIOs that can be further rewritten by the rules below. Given
VIO(κis,F), where κis = (ξis, ω

i
s), recall that if κis is shape-based, ωis is a shape

name. The specific rewrite rules are provided for different values of ξis as follows.
Rule 1: ξis = sh:node or ξis =sh:property. A violation is induced if any

value node of any focus f ∈ F violates any of the {1, · · · , nωi
s
} constraints of ωis.

The first rule is thus defined as follows:

Rule 1: VIO(κis,F)→VIO(κ1ωi
s
,F ′)+ · · ·+VIO(κ

nωi
s

ωi
s
,F ′),

where F ′ = {v | ∀f ∈ F ,∀v ∈ µs(f)}. The plus signs separate the children
of VIO(κis,F) in the expansion tree and each child VIO represents a choice to
induce violation on κis.

8 T.W. Lin et al.

Rule 2: ξis = sh:qualifiedValueShape. In addition to ωis as the parameter
value, sh:qualifiedMaxCount and sh:qualifiedMinCount are two additional
parameters. To violate sh:qualifiedMaxCount, all constraints in the depen-
dency of Σωi

s
must be satisfied. Therefore, no rewriting rule is required. We

define the corresponding SPARQL operation in App. A. We focus on the case
when there exists h ∈ Is such that ξhs =sh:qualifiedMinCount as follows.

We define ψωi
s
(f) = {v ∈ µs(f) | v |= Σωi

s
}, a value mapping function that is

stricter than µs, in the sense that ψωi
s
(f) only admits nodes v ∈ µs(f) that satisfy

Σωi
s
. For a focus node f ∈ F , we must make edits such that |ψωi

s
(f)| becomes

strictly smaller than ωhs , the parameter value of sh:qualifiedMinCount that
is a positive integer. For a node v ∈ ψωi

s
(f), there are two strategies to remove

v from ψωi
s
(f): (a) Make v violate ωis, or (b) Make v unreachable from f via

the path mapping ps. Therefore, for any subset ϵmf ⊆ ψωi
s
(f), such that |ϵmf | =

|ψωi
s
(f)| − ωhs + 1, we apply a combination of the above two strategies for all

nodes v ∈ ϵmf . We create an artificial node shape Σv_node and property shape
Σf_v_prop to translate the operations into VIOs, where
– τv_node(G) = {v}, µv_node(v) = {v}, κv_node = {(sh:node, ωis)} and
– τf_v_prop(G) = {f}, µf_v_prop(f) = {v}, κf_v_prop = {(sh:minCount, 1)}.
In addition, since Σf_v_prop is a property shape, we let the path mapping

pf_v_prop = ps. We define Φ(ϵmf) =
{
g(v) : ϵmf → {v_node, f_v_prop}

}
, which

contains all possible ways to choose “node” and “prop” for each v ∈ ϵmf . The sec-
ond rule is defined as follows

Rule 2: VIO(κis,F) →
∑
f∈F

∑
ϵmf ⊆ψωi

s
(f)

|ϵmf |=|ψωi
s
(f)|−ωh

s +1

∑
g∈Φ(ϵmf)

∏
v∈ϵmf

VIO(κ1g(v), τg(v)(G)).

We implement logical constraints sh:or and sh:and in a similar manner
for the evaluation in Sec. 7. We leave sh:xone and sh:not to future work. The
following theorem states that, under mild assumptions, A is strongly normalizing
and thus is guaranteed to terminate.

Theorem 1 (Strong Normalization of A). If G and S are finite and there
are no recursive shapes [14], then the rewriting system A is strongly normalizing.

Proof. See App. C for the proof.

4.3 Constraint Collection and De-duplication

To systematically evaluate the repair system, we create test cases where each
constraint in S is violated. Assuming S has no recursive shapes, we first topo-
logically sort its shapes. We build expansion trees and perform a depth-first
search (DFS) from each root shape. Each child node in an expansion tree rep-
resents an option to violate its parents. Thus, if multiple children exist, one is
chosen randomly. The DFS collects violations until all constraints in S are en-
countered. Finally, we remove duplicates—VIOs with the same constraint and

Title Suppressed Due to Excessive Length 9

VIO((:PaperShape,sh:property,:ReviewedByShape),{ex:PaperABC,ex:PaperA})
VIO((:ReviewedByShape,sh:qualifiedValueShape,:ReviewerShape;sh:qualifiedMinCount,1),{ex:PaperABC,ex:PaperA})

VIO((Alice_node,sh:node,:ReviewerShape),{ex:Alice})VIO((Bob_node,sh:node,:ReviewerShape),{ex:Bob})
VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Alice})VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Bob})
VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Alice})VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Bob})
VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Alice})VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Bob})
VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Alice})VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Bob})

VIO((Alice_node,sh:node,:ReviewerShape),{ex:Alice})VIO((PaperABC_Bob_prop,sh:minCount,1),{ex:PaperABC})
VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Alice})VIO((PaperABC_Bob_prop,sh:minCount,1),{ex:PaperABC})
VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Alice})VIO((PaperABC_Bob_prop,sh:minCount,1),{ex:PaperABC})

VIO((PaperABC_Alice_prop,sh:minCount,1),{ex:PaperABC})VIO((Bob_node,sh:node,:ReviewerShape),{ex:Bob})
VIO((PaperABC_Alice_prop,sh:minCount,1),{ex:PaperABC})VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Bob})
VIO((PaperABC_Alice_prop,sh:minCount,1),{ex:PaperABC})VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Bob})

VIO((PaperABC_Alice_prop,sh:minCount,1),{ex:PaperABC})VIO((PaperABC_Bob_prop,sh:minCount,1),{ex:PaperABC})
VIO((Alice_node,sh:node,ex:ReviewerShape),{ex:Alice})

VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Alice})
VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Alice})

VIO((PaperA_Alice_prop,sh:minCount,1),{ex:PaperA})
VIO((:ReviewedByShape,sh:qualifiedValueShape,:ReviewerShape;sh:qualifiedMaxCount,3),{ex:PaperABC,ex:PaperA})

1
2

4

3
5
6

7

Fig. 3: Expansion tree and DFS on the running example.

focus that lead to isomorphic invalid graphs—to avoid bias when different shapes
share identical constraints and focuses.
Running Example. Fig. 3 shows the expansion tree of the running exam-
ple. The shapes in topological order are :PaperShape, :ReviewedByShape, and
:ReviewerShape. Performing DFS from :PaperShape, the set of paths P1 =
{(1, 2, 4), (7)} collects all the constraints. Conversely, the set of paths P2 =
{(1, 3, 5), (7)} does not collect all constraints, whereas P3 = {(1, 3, 5), (1, 3, 6), (7)}
does. Consequently, DFS terminates for P1 and P3, but not for P2.

4.4 Apply Normalized Expressions on Copies of KG

For each leaf node in the set of paths collected from the DFS, we make a copy
of G and apply a predefined set of SPARQL operations to obtain G′. Given
VIO(κis,F), where κis = (ξis, ω

i
s), we apply the SPARQL operations based on the

value of ξis as follows.
ξis =sh:class. For any f in F , f satisfies κis only if (v,a,ωis)∈ G for all v ∈

µs(f), where ωis is a class name. Therefore, we randomly choose one f ∈ F
and one v ∈ µs(f) and perform the SPARQL operation remove((v,a,ωis)) to
remove the triple (v,a,ωis) from G. When s is a property shape and µs(f) = ∅
(i.e., f has no value node), we perform the SPARQL operation add((f,ps,ℓ))
to add the triple (f ,ps,ℓ) to G, where ℓ is a randomly selected literal from G.

ξis =sh:minCount. For any f in F , f satisfies κis only if |µs(f)| ≥ ωis, where
ωis is a positive integer. Therefore, we randomly choose a subset M ⊆ µs(f) of
size |µs(f)| − ωis + 1 and perform remove((f,ps,v)) for all v ∈ M.

Other non shape-based constraints can be implemented similarly. We imple-
ment sh:datatype, sh:nodeKind, sh:maxCount, sh:hasValue, and sh:in for
the evaluation in Sec. 7, leaving additional constraints for future work.

10 T.W. Lin et al.

Table 1: Summary of contexts.
Label Description

SHACL
Manifest
Context

M The entire SHACL manifest excluding
natural language descriptions of classes

S The source constraint and dependency
Sn S unioned with natural language

descriptions of classes

Knowledge
Graph

Context

G The entire knowledge graph
F Triples used to validate the focus node

and relevant value nodes
F+ F unioned with a positive example

Table 2: Dataset statistics. The
G and S sizes of Brick are averaged
across eight different KGs and man-
ifests.

G size S size test α
(#triples) (#triples) cases mean max

Brick 35 108 144 3.23 13
LUBM 229 207 70 2.51 14
QUDT 81,293 2,642 134 1.5 26

Validation Report
Conforms: False
Results (2):
Constraint Violation in QualifiedMinCountConstraintComponent:

Source Shape: :ReviewedByShape
Focus Node: ex: PaperABC
Result Path: ex: reviewedBy

Constraint Violation in QualifiedMinCountConstraintComponent:
Source Shape: :ReviewedByShape
Focus Node: ex: PaperA
Result Path: ex: reviewedBy

Fig. 4: Validation report Γ (G′,S), where G′ is derived from applying E1 to G.
G and S are defined in Fig. 2.

Running Example. Consider P3 from our running example, with leaf nodes
(E1) VIO((:ReviewerShape,sh:class,ex:CommitteeMember),{ex:Alice})·

VIO((PaperABC_Bob_prop,sh:minCount,1),{ex:PaperABC})
(E2) VIO((:ReviewerShape,sh:class,ex:Professor),{ex:Alice})·

VIO((PaperABC_Bob_prop,sh:minCount,1),{ex:PaperABC})
(E3) VIO((:ReviewedByShape,sh:qualifiedValueShape,:ReviewerShape;

sh:qualifiedMaxCount,3),{ex:PaperABC,ex:PaperA})
By taking E1, for example, we apply the SPARQL operations: remove((ex:Alice,
a, ex:CommitteeMember)), which disqualifies ex:Alice as a :Reviewer for
ex:PaperABC, and remove((ex:PaperABC,ex:reviewedBy,ex:Bob)), which re-
moves ex:Bob as a :Reviewer of ex:PaperABC. These operations are performed
on the same copy of G to produce G′. We validate G′ against S and obtain the
validation report in Fig. 4. E1 produces two validation results, though it was to
violate one constraint, (:PaperShape,sh:property,:ReviewedByShape), with
one focus ex:PaperABC. The VIO also affects ex:PaperA. We define the ampli-
fication factor α of an expression E as the number of non-empty validation
results in Γ (G′,S). In this case, we have α(E1) = 2. For a KG with high depen-
dencies, α can be high. We apply E2 and E3 on copies of G to generate two more
violating instances of the KG, yielding three test cases for the running example.

5 Prototype LLM-Based Repair Systems

To demonstrate our evaluation framework, we develop a family of LLM-based KG
repair systems, each utilizing a different large language model and prompting

Title Suppressed Due to Excessive Length 11

Primer
You are an expert in repairing RDF graphs that violate SHACL shapes. Output a SPARQL operation that
fixes the violation.

Violation Context
Focus Node: <urn:bldg/ahu>
Violated source SHACL shape:
[] sh:path brick:feeds; sh:qualifiedMinCount 1;

sh:qualifiedValueShape [sh:node <urn:my_site_constraints/co2_zone>].
Reason: qualifiedMinCount is violated

SHACL Manifest Context
SHACL shapes graph:
<urn:my_site_constraints/co2_zone> a sh:NodeShape;

sh:property [sh:path brick:hasPoint; ... <omit> ...

Knowledge Graph Context
RDF knowledge graph:
<urn:bldg/ahu> a brick:Air_Handling_Unit;

brick:hasPoint <urn:bldg/outside_co2_sensor>. ... <omit> ...

Instructions
Use "INSERT DATA { }", "DELETE DATA { }", or "DELETE { } INSERT { } WHERE { }" to fix
the violation with minimal change that is contextually appropriate. Invent placeholder names or remove
existing instances only if necessary. Do not use nested curly brackets.
Respond only with valid json format using key "answer" without explanations. For example, {"an-
swer":"INSERT DATA ..."} or {"answer":"DELETE DATA {...}"} or {"answer":"DELETE {...} INSERT
{...} WHERE {...}"}.

Fig. 5: Prompt template for our LLM-based KG repair systems

strategy. Our framework supports a fine-grained analysis of these systems, as
described in Sec. 7.

Each system takes as input the invalid graph G′, the manifest S, and the
validation report Γ (G′,S). Given a validation result in Γ (G′,S), the LLM is
prompted to generate a repair. The prompting template for the repair systems
has five sections (Fig. 5): Primer, Violation Context, SHACL Manifest Context
(Cm), KG Context (Cg), and Instructions. We define three configurations for both
Cm and Cg, yielding nine repair system variations summarized in Table 1.

For the Manifest Context Cm, we define three variations with respect to a
validation result ρis,v with source shape Σs and focus v. (i) M : The entire Turtle-
serialized [3] manifest S, providing the most detailed context but may exceed
the LLM context window. (ii) S: A subset of S containing only the source shape
and its dependent shapes to improve scalability by reducing context size while
retaining essential validation information. (iii) Sn: Extends S by adding natural
language descriptions (e.g., dcterms:description, rdfs:label) for classes to
asses the value of natural language context.

For the KG context Cg, we define three variations with respect to a validation
result ρis,v with source shape Σs, focus v, and the chosen manifest context Cm.
(i) G: The entire Turtle-serialized KG G, providing the most detailed context
but may exceed the LLM context window. (ii) F (Cm): A subset of G, including
only triples involved in validating the focus against the source shape to produce
ρis,v. If the source constraint is sh:qualifiedMinCount and Σs′ is the object of
the corresponding sh:qualifiedValueShape, we include triples from validating
nodes that satisfy Σs′ . Essentially, F (Cm) removes information in G that is not
used in the validation to improve scalability. (iii) F (Cm)+: Extends F (Cm) with

12 T.W. Lin et al.

:ReviewedByShape a sh: PropertyShape;
sh: path ex: reviewedBy;
sh: qualifiedValueShape :ReviewerShape;
sh: qualifiedMinCount 1.

:ReviewerShape a sh: NodeShape;
sh: class ex: Professor ,

ex: CommitteeMember.

Fig. 6 (a) S for the running example

ex: PaperABC a ex: Paper;
ex: reviewedBy ex: Alice , ex: Clark.

ex: Alice a ex: Professor.
ex: Bob a ex: Professor ,

ex: ComitteeMember.
ex: Clark a ex: Student.
ex: Dan a ex: Professor ,

ex: ComitteeMember.

Fig. 6 (b) F (S) for the running example

a positive example by including triples from validating a node that satisfies the
source shape. This serves as additional context to show how Σs is satisfied.
Running Example. Assume we obtain G′ by applying E1, resulting in the val-
idation result ρ1:ReviewedByShape,ex:PaperABC. We show S and F (S) in Fig. 6. Note
that in Fig. 6b, (ex:PaperABC,ex:author,ex:Ethan) is not included because
the triple was not used in validating ex:PaperABC against Σ:ReviewedByShape, as de-
fined in Fig. 6a. On the other hand, ex:Bob and ex:Dan satisfy :ReviewerShape,
so the relevant triples are included.

6 Evaluation Metrics

We define four tiered metrics to evaluate the quality of the generated repair.
Each tier is assessed only if all the lower-tier metrics are satisfied. Additionally,
we describe how the cost of generating a repair is measured.

The metrics are listed below in order of increasing stringency. We start with
syntactic validity: A repair π should be parsed without error. Therefore, π is
syntactically valid if it adheres to correct SPARQL syntax. As a second metric,
we consider semantic validity: After a syntactically correct π is applied to
the invalid graph G′ to obtain G′

π, the violation should be eliminated. Thus, π
is semantically valid if G′

π |= S. We then evaluate a property which we term
relaxed isomorphism: A semantically valid π should ideally revert the VIO
to recover the original KG G. However, inferring the exact string from the pro-
vided context can be challenging without access to an external knowledge base.
Therefore, we relax the traditional definition of isomorphism for RDF graphs [25]
to allow non-exact string matches for the literals. If G′

π and G are isomorphic
when all literals are replaced with a placeholder string placeholder, then π is
relaxed-isomorphic. Finally, a relaxed-isomorphic π is further tested for exact
isomorphism. If G′

π and G are exactly isomorphic, then π is isomorphic.
Recall that different variations of manifest and KG contexts include varying

levels of details and consequently, different token counts. Moreover, commercial
LLMs have distinct pricing models (see App. D for details). We choose the
following LLMs: (i) GPT4o (OpenAI), (ii) Claude 3.0 Opus (Anthropic), (iii)
Gemini 1.5 Pro (Google), and (iv) Llama 3.1 405B (Meta, via AWS Bedrock).
For each combination of manifest and KG context and LLM, we evaluate the
token counts and cost of generating π. All LLMs were accessed in January 2025.

Title Suppressed Due to Excessive Length 13

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

103

6× 102

2× 103

3× 103
4× 103

T
ok

en
C

ou
nt

Brick

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

103

LUBM

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

104

106
QUDT

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

Prompting Strategies

10−3

10−2

C
os

t
(U

S
D

)

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

Prompting Strategies

10−3

10−2

10−1

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

Prompting Strategies

10−2

100

GPT4o - Input
GPT4o - Output

Opus - Input
Opus - Output

Gemini - Input
Gemini - Output

Llama - Input
Llama - Output

Fig. 7: Average token count and cost for different prompting strategies
and LLMs.

7 Evaluation Results

We test our evaluation framework and repair systems on three datasets. Each
consists of KGs with corresponding SHACL manifests. Brick Ontology [9]
standardizes semantic descriptions of the physical, logical, and virtual assets in
buildings and their relationships. Using the 1.3 release, we construct eight man-
ifests based on HVAC hardware specifications from ASHRAE Guideline 36 [8]
and manually create one KG for each system. LUBM Ontology [23] is a syn-
thetic graph modeling a university. We adapt the KG and manifest from Figuera
et al. [21,38] by adding triples to create a valid graph. QUDT Ontology [15]
is a unified conceptual representation of quantities, quantity kinds, units, and
related concepts. Using the 2.1 release, this dataset is two to three orders of
magnitude larger than the others, and serves to test the scalability of the repair
process. Descriptive statistics for each data set are in Table 2.

7.1 Evaluation of Prototype Repair System

Given a validation report of an invalid graph, Γ (G′,S), we randomly choose
one validation result to construct different prompting strategies as described
in Sec. 5. If multiple VIO expressions are applied to the same graph, a more
sophisticated mechanism would be required to resolve interdependencies between
validation results; we leave this for future work.

With three variations each for the manifest and KG contexts, we obtain nine
distinct prompting strategies. For simplicity, we omit the explicit dependency
of the KG context on the manifest context in our notation (e.g., MF denotes
MF (M)). We apply these nine strategies across the four LLMs described in
Sec. 6 and three datasets, evaluating both cost and repair quality.

Cost of generating the repair. Fig. 7 presents the average input and output
token counts and associated costs. Due to budget constraints, we do not query

14 T.W. Lin et al.

Table 3: Average scores for all LLMs and prompting strategies.
Syntactic Validity Semantic Validity Relaxed Isomorphism Isomorphism

Average 97.35% 86.17% 54.07% 49.94%

the LLM for a response if the average input cost exceeds $0.5; thus, output token
counts and costs for these cases are excluded from the figure.

Fig. 7 shows that using the entire manifest and KG as context (MG) results
in the highest input token count and the highest expense across all datasets.
The inclusion of natural language descriptions for classes (Sn versus S) increases
input tokens only minimally for LUBM, as its ontology contains few such defini-
tions. We also observe that Claude 3.0 Opus has the most granular tokenization,
leading to the highest token counts and costs.

Quality of the repair. We evaluate the four LLMs on three datasets using the
nine prompting strategies. Table 3 reports the percentage of test cases passing
each evaluation metric, averaged across datasets (see App. E for detailed results).
Syntactic validity is nearly 100%, with errors mainly due to missing or extra
closing brackets or quotations, indicating that LLMs handle SPARQL syntax
well. However, isomorphism scores the lowest; we hypothesize that giving the
repair system access to external knowledge bases could improve this, which we
leave for future work.

We next assess the effects of different manifest contexts, KG contexts, and
LLM choices on repair quality.

Manifest Context. We investigate the following questions: (i) Does using M
produce a different result from S? (ii) Does using S produce a different result
from Sn? (iii) Does using M produce a different result from Sn? To answer these,
we collect relevant results and fit a linear mixed-effects model (LMM) [35] to
estimate the effect of using different manifest contexts. We use LMM because our
measurements of nine prompting strategies on three datasets using four LLMs
violate the independence assumptions required for ordinary least squares linear
regression [48]; for example, measurements from the same LLM are correlated.
Further details on LMM can be found in App. F.

Fig. 8 shows the average effect (percentage change, ∆%) across all metrics
and individually, with 95% confidence intervals. Metrics not crossing the 0% line
are statistically significant (p-value < 0.05). The results indicate that switching
from M to S improves all metrics except syntactic validity, which is already
near 100%. This suggests that providing the entire manifest (M) overloads and
distracts the LLM, while focusing on essential validation information (S) leads
to better repairs. Switching from S to Sn has no significant effect. Changing
from M to Sn yields similar results as changing from M to S. Overall, concise
prompts perform best; S is preferred since it requires fewer tokens than Sn and
yields reliable results.

Title Suppressed Due to Excessive Length 15

−20 0 10

C
on

te
xt

s

M → S

−20 0 10

S → Sn

−20 0 10

M → Sn

−20 0 10

G→ F

−20 0 10

F → F+

−20 0 10

G→ F+

−20 0 10
∆%

L
L

M
s

GPT4o→Llama

−20 0 10
∆%

GPT4o→Opus

−20 0 10
∆%

GPT4o→Gemini

−20 0 10
∆%

Llama→Opus

−20 0 10
∆%

Llama→Gemini

−20 0 10
∆%

Opus→Gemini

Overall Syntactic Validity Semantic Validity Relaxed Isomorphism Isomorphism

Fig. 8: Estimated effects of context selection and LLM selection.

KG Context. We also analyze the impact of different KG contexts. As shown
in Fig. 8, switching from G to F negatively affects overall metrics, especially
relaxed isomorphism and isomorphism, but improves semantic validity.
This indicates that while removing extraneous information helps the LLM focus
on eliminating violations (thus improving semantic validity), it also deprives the
model of valuable context needed to generate repairs that closely match the
original KG. In contrast to the manifest context, where reducing information
(M → S) is beneficial, reducing KG context (G→ F) harms the stricter metrics.
This suggests that information not directly used in validation still provides useful
context for the LLM to infer the most appropriate repair.

Adding a positive example (F → F+) improves overall performance, partic-
ularly for isomorphism. Recall that F+ augments F with a positive example
from G that is not involved in validating the focus node. Changing from G to
F+ only improves semantic validity, with little effect on other metrics. No-
tably, compared to G → F , the negative impact on relaxed isomorphism
and isomorphism is much smaller for G→ F+. We hypothesize that including
more context about the focus node could further improve performance beyond
G. Overall, F+ offers a good balance between cost, scalability, and performance.

LLM Selection. We also assess which LLM yields the highest quality repairs.
Fig. 8 shows that switching from GPT-4o, Llama 3.1 405B, or Claude 3.0 Opus
to Gemini 1.5 Pro significantly reduces performance. However, there is no sig-
nificant difference among GPT-4o, Llama 3.1 405B, and Claude 3.0 Opus. Con-
sidering cost, GPT-4o and Llama 3.1 405B are preferable, as Claude 3.0 Opus
incurs higher costs due to its granular tokenization.

In summary, our analysis shows that the best repair results are achieved by
including only the manifest and KG information used to validate the focus node
v against the source shape Σs, plus a positive example for additional context.
This fine-grained insight is uniquely enabled by our evaluation framework.

16 T.W. Lin et al.

8 Conclusion

This paper presents a systematic evaluation framework and metrics for repair-
ing knowledge graphs using SHACL manifests. We assess the semantic and con-
textual capabilities of four commercial LLMs across nine prompting strategies,
yielding three key insights: (i) For manifest context, including the source shape
and its dependencies is essential for effective repairs; (ii) For KG context, restrict-
ing context to only the focus node and its dependencies reduces repair quality,
but adding a positive example preserves performance; and (iii) Among the LLMs
tested, three yield similar performances, whereas GPT4o and Llama 3.1 405B
offer advantages in cost. Our framework enables fine-grained analysis of repair
systems, supporting the automated generation and maintenance of high-quality
knowledge graphs for downstream applications.

References

1. Resource description framework (rdf). https://www.w3.org/RDF/, accessed: 2025-
05-05

2. Simple protocol and rdf query language, (sparql). https://www.w3.org/TR/
sparql11-query/, accessed: 2025-05-05

3. Turtle syntax. https://www.w3.org/TR/turtle/, accessed: 2025-05-05
4. World wide web consortium (w3c). https://www.w3.org/, accessed: 2025-05-05
5. Ahmetaj, S., David, R., Polleres, A., Šimkus, M.: Repairing shacl constraint viola-

tions using answer set programming. In: International Semantic Web Conference.
pp. 375–391. Springer (2022)

6. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. pp. 68–79 (1999)

7. Arnaout, H., Tran, T.K., Stepanova, D., Gad-Elrab, M.H., Razniewski, S., Weikum,
G.: Utilizing language model probes for knowledge graph repair. In: Wiki Workshop
2022 (2022)

8. ASHRAE, G.: 36: High performance sequences of operation for hvac systems.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, At-
lanta (2018)

9. Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen,
A., Koh, J., Ploennigs, J., Agarwal, Y., et al.: Brick: Towards a unified metadata
schema for buildings. In: Proceedings of the 3rd ACM International Conference on
Systems for Energy-Efficient Built Environments. pp. 41–50 (2016)

10. Bi, Z., Chen, J., Jiang, Y., Xiong, F., Guo, W., Chen, H., Zhang, N.: Codekgc: Code
language model for generative knowledge graph construction. ACM Transactions
on Asian and Low-Resource Language Information Processing 23(3), 1–16 (2024)

11. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD international conference on Management of data. pp.
1247–1250 (2008)

12. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter,

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/turtle/
https://www.w3.org/

Title Suppressed Due to Excessive Length 17

C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language Models are
Few-Shot Learners (Jul 2020). https://doi.org/10.48550/arXiv.2005.14165

13. Car, N.: pyshacl. https://github.com/RDFLib/pySHACL (2024). https://doi.
org/10.5281/zenodo.4750840, for all versions/latest version

14. Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive shacl.
In: The Semantic Web–ISWC 2018: 17th International Semantic Web Conference,
Monterey, CA, USA, October 8–12, 2018, Proceedings, Part I 17. pp. 318–336.
Springer (2018)

15. FAIRsharing.org: Qudt; quantities, units, dimensions and types (2022), https://
doi.org/10.25504/FAIRsharing.d3pqw7, last Edited: Friday, May 6th 2022, 2:03,
Last Accessed: Friday, December 13th 2024, 11:47, Last Reviewed: Monday, May
2nd 2022, 3:22

16. Fan, W., Lu, P., Tian, C., Zhou, J.: Deducing certain fixes to graphs. Proceedings
of the VLDB Endowment 12(7), 752–765 (2019)

17. Farzana, S., Zhou, Q., Ristoski, P.: Knowledge graph-enhanced neural query rewrit-
ing. In: Companion Proceedings of the ACM Web Conference 2023. pp. 911–919
(2023)

18. Fierro, G., Prakash, A.K., Mosiman, C., Pritoni, M., Raftery, P., Wetter, M.,
Culler, D.E.: Shepherding Metadata Through the Building Lifecycle. In: Proceed-
ings of the 7th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation. pp. 70–79. ACM, Virtual Event Japan (Nov
2020). https://doi.org/10.1145/3408308.3427627

19. Fierro, G., Pritoni, M., Abdelbaky, M., Lengyel, D., Leyden, J., Prakash, A.,
Gupta, P., Raftery, P., Peffer, T., Thomson, G., Culler, D.E.: Mortar: An open
testbed for portable building analytics. ACM Trans. Sen. Netw. 16(1) (Dec 2019).
https://doi.org/10.1145/3366375, https://doi.org/10.1145/3366375

20. Fierro, G., Saha, A., Shapinsky, T., Steen, M., Eslinger, H.: Application-driven
creation of building metadata models with semantic sufficiency. In: Proceedings of
the 9th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. pp. 228–237 (2022)

21. Figuera, M., Rohde, P.D., Vidal, M.E.: Trav-shacl: Efficiently validating networks
of shacl constraints. In: Proceedings of the Web Conference 2021. pp. 3337–3348
(2021)

22. Gayo, J.E.L., Knublauch, H., Kontokostas, D.: Data Shapes Test Suite. https://
w3c.github.io/data-shapes/data-shapes-test-suite/ (2025), accessed: 2025-
04-23

23. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Journal of Web Semantics 3(2-3), 158–182 (2005)

24. Hammar, K., Wallin, E.O., Karlberg, P., Halleberg, D.: The RealEstateCore On-
tology. p. 16

25. Hogan, A.: Skolemising blank nodes while preserving isomorphism. In: Proceedings
of the 24th International Conference on World Wide Web. pp. 430–440 (2015)

26. Klop, J.W., Klop, J.: Term rewriting systems. Centrum voor Wiskunde en Infor-
matica (1990)

27. Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang,
Y., Narayanan, D., Wu, Y., Kumar, A., Newman, B., Yuan, B., Yan, B., Zhang, C.,
Cosgrove, C., Manning, C.D., Ré, C., Acosta-Navas, D., Hudson, D.A., Zelikman,
E., Durmus, E., Ladhak, F., Rong, F., Ren, H., Yao, H., Wang, J., Santhanam, K.,
Orr, L., Zheng, L., Yuksekgonul, M., Suzgun, M., Kim, N., Guha, N., Chatterji, N.,

https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://github.com/RDFLib/pySHACL
https://doi.org/10.5281/zenodo.4750840
https://doi.org/10.5281/zenodo.4750840
https://doi.org/10.5281/zenodo.4750840
https://doi.org/10.5281/zenodo.4750840
https://doi.org/10.25504/FAIRsharing.d3pqw7
https://doi.org/10.25504/FAIRsharing.d3pqw7
https://doi.org/10.1145/3408308.3427627
https://doi.org/10.1145/3408308.3427627
https://doi.org/10.1145/3366375
https://doi.org/10.1145/3366375
https://doi.org/10.1145/3366375
https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://w3c.github.io/data-shapes/data-shapes-test-suite/

18 T.W. Lin et al.

Khattab, O., Henderson, P., Huang, Q., Chi, R., Xie, S.M., Santurkar, S., Ganguli,
S., Hashimoto, T., Icard, T., Zhang, T., Chaudhary, V., Wang, W., Li, X., Mai,
Y., Zhang, Y., Koreeda, Y.: Holistic Evaluation of Language Models (Oct 2023).
https://doi.org/10.48550/arXiv.2211.09110

28. Malaviya, C., Bhagavatula, C., Bosselut, A., Choi, Y.: Commonsense knowledge
base completion with structural and semantic context. In: Proceedings of the AAAI
conference on artificial intelligence. vol. 34, pp. 2925–2933 (2020)

29. Melnyk, I., Dognin, P., Das, P.: Knowledge graph generation from text. arXiv
preprint arXiv:2211.10511 (2022)

30. Mihindukulasooriya, N., Tiwari, S., Enguix, C.F., Lata, K.: Text2kgbench: A
benchmark for ontology-driven knowledge graph generation from text. In: Interna-
tional Semantic Web Conference. pp. 247–265. Springer (2023)

31. Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D., Arenas, M.G., Rao, K.,
Sadigh, D., Zeng, A.: Large language models as general pattern machines. arXiv
preprint arXiv:2307.04721 (2023)

32. Pareti, P., Konstantinidis, G.: A review of shacl: from data validation to schema
reasoning for rdf graphs. Reasoning Web International Summer School pp. 115–144
(2021)

33. Pellissier Tanon, T., Bourgaux, C., Suchanek, F.: Learning how to correct a knowl-
edge base from the edit history. In: The World Wide Web Conference. pp. 1465–
1475 (2019)

34. Pellissier Tanon, T., Suchanek, F.: Neural knowledge base repairs. In: The Semantic
Web: 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021,
Proceedings 18. pp. 287–303. Springer (2021)

35. Pinheiro, J.C., Bates, D.M.: Linear mixed-effects models: basic concepts and ex-
amples. Mixed-effects models in S and S-Plus pp. 3–56 (2000)

36. Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-Based Data
Access: Ontop of Databases. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg,
J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C.,
Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G.,
Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) Advanced Information Systems En-
gineering, vol. 7908, pp. 558–573. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41335-3_35

37. Ryen, V., Soylu, A., Roman, D.: Building Semantic Knowledge Graphs from (Semi-
)Structured Data: A Review. Future Internet 14(5), 129 (Apr 2022). https://doi.
org/10.3390/fi14050129

38. SDM-TIB: Tracedsparql (2023), https://github.com/SDM-TIB/TracedSPARQL,
accessed: 2024-12-13

39. Shen, T., Zhang, F., Cheng, J.: A comprehensive overview of knowledge graph
completion. Knowledge-Based Systems 255, 109597 (2022)

40. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent
query answering in relational databases. Annals of Mathematics and Artificial In-
telligence 64(2), 209–246 (2012)

41. Suchanek, F.M., Alam, M., Bonald, T., Chen, L., Paris, P.H., Soria, J.: YAGO
4.5: A Large and Clean Knowledge Base with a Rich Taxonomy. In: Proceedings
of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval. pp. 131–140. ACM, Washington DC USA (Jul 2024).
https://doi.org/10.1145/3626772.3657876

42. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (Sep 2014). https://doi.org/10.1145/
2629489

https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.3390/fi14050129
https://doi.org/10.3390/fi14050129
https://doi.org/10.3390/fi14050129
https://doi.org/10.3390/fi14050129
https://github.com/SDM-TIB/TracedSPARQL
https://doi.org/10.1145/3626772.3657876
https://doi.org/10.1145/3626772.3657876
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489

Title Suppressed Due to Excessive Length 19

43. Wang, L., Zhao, W., Wei, Z., Liu, J.: Simkgc: Simple contrastive knowledge graph
completion with pre-trained language models. arXiv preprint arXiv:2203.02167
(2022)

44. Wright, J., Rodríguez Méndez, S.J., Haller, A., Taylor, K., Omran, P.G.: Schimatos:
a shacl-based web-form generator for knowledge graph editing. In: International
Semantic Web Conference. pp. 65–80. Springer (2020)

45. Xu, Z., Cruz, M.J., Guevara, M., Wang, T., Deshpande, M., Wang, X., Li, Z.:
Retrieval-augmented generation with knowledge graphs for customer service ques-
tion answering. In: Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 2905–2909 (2024)

46. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React:
Synergizing reasoning and acting in language models. In: International Conference
on Learning Representations (ICLR) (2023)

47. Yu, N., Nützmann, H.W., MacDonald, J.T., Moore, B., Field, B., Berriri, S.,
Trick, M., Rosser, S.J., Kumar, S.V., Freemont, P.S., Osbourn, A.: Delineation of
metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids
Research 44(5), 2255–2265 (Mar 2016). https://doi.org/10.1093/nar/gkw100

48. Zdaniuk, B.: Ordinary least-squares (ols) model. In: Encyclopedia of quality of life
and well-being research, pp. 4867–4869. Springer (2024)

49. Zhao, S., Yang, Y., Wang, Z., He, Z., Qiu, L.K., Qiu, L.: Retrieval Augmented
Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your
LLMs use External Data More Wisely (Sep 2024). https://doi.org/10.48550/
arXiv.2409.14924

https://doi.org/10.1093/nar/gkw100
https://doi.org/10.1093/nar/gkw100
https://doi.org/10.48550/arXiv.2409.14924
https://doi.org/10.48550/arXiv.2409.14924
https://doi.org/10.48550/arXiv.2409.14924
https://doi.org/10.48550/arXiv.2409.14924

20 T.W. Lin et al.

A VIO Definition for sh:qualifiedMaxCount

Following the discussion in Sec. 4.2 on the rewrite rule for VIO(κis,F), where F
is a set of focus nodes and κis = (ξis, ω

i
s) denotes the i-th constraint-parameter

pair for shape Σs, with ωis being a shape name and Is the index set of con-
straints for Σs). Consider the case where ξis = sh:qualifiedValueShape. If
there exists h ∈ Is such that ξhs =sh:qualifiedMaxCount, then a violation of
sh:qualifiedMaxCount requires that all constraints in the dependency of Σωi

s

be satisfied. Thus, no rewrite rule is needed. Instead, we directly define the
SPARQL operation for VIO(κis,F) when ξis = sh:qualifiedValueShape and
sh:qualifiedMaxCount constraint exists.

For a focus node f ∈ F , we define ψωi
s
(f) = {v ∈ µs(f) | v |= Σωi

s
}, a

value mapping function that is stricter than the ordinary value mapping function
defined in Sec. 4.1 µs, in the sense that ψωi

s
(f) only admits nodes v ∈ µs(f) that

satisfy Σωi
s
. We must make edits such that |ψωi

s
(f)| becomes strictly larger than

ωhs , the positive integer parameter value of sh:qualifiedMaxCount. We need to
construct a set ϵMf ⊆ V, where ∀ v ∈ ϵMf , v |= Σωi

s
and v /∈ ψωi

s
(f). Furthermore,

|ϵMf | = ωhs − |ψωi
s
(f)| + 1. We perform class-aware subgraph monomorphism

search in G following Fierro et al. [20] for nodes that satisfy Σωi
s
. If only partial

matches of Σωi
s

are identified, we prompt an LLM to mint new entity names (see
App. B for details). We then define the SPARQL operation: add((f,ps,v)) for
all v ∈ ϵMf .

B Subgraph Monomorphism Search for Σωi
s

The subgraph monomorphism search proposed by Fierro et al. [20] first converts
Σωi

s
to a graph Gωi

s
then retrieves the largest subgraphs in G that are monomor-

phic to subgraphs of Gωi
s
. Each retrieved subgraph corresponds to a part of G

that satisfies a maximum number of constraints in Σωi
s
. For a retrieved subgraph

Ḡ(V̄, Ē) ⊆ G(V, E) that is fully monomorphic to Gωi
s
, we identify the node v̄ ∈ V̄

such that v̄ |= Σωi
s

and add it to ϵMf if it is not already in ψωi
s
(f). However, if

the retrieved subgraph is only monomorphic to a subgraph of Gωi
s
, we prompt

an LLM to mint new entities so that the identified v̄ ∈ V̄ satisfies Σωi
s
.

Running Example. Consider VIO((:ReviewedByShape,
sh:qualifiedValueShape, :ReviewerShape;sh:qualifiedMaxCount,3),
{ex:PaperABC}), where we have ψ:ReviewerShape(ex:PaperABC) =
{ex:Alice, ex:Bob}. We must construct a set ϵMex:PaperABC of size 3 − 2 + 1 = 2.
The subgraph monomorphism search retrieves a node ex:Dan∈ V that satisfies
:ReviewerShape and is not already in {ex:Alice, ex:Bob}. We still need one
more node that satisfies :ReviewerShape but the only existing subgraphs in G
are
1. (ex:Alice, a, ex:Professor, ex:CommitteeMember),
2. (ex:Bob, a, ex:Professor, ex:CommitteeMember),
3. (ex:Dan, a, ex:Professor, ex:CommitteeMember)

Title Suppressed Due to Excessive Length 21

Generate an entity name to replace urn:___param___#name in the following graph.
urn:___param___#name a ex:Professor, ex:ComitteeMember.
Your answer must be semantically similar to the corresponding entity in the following example but
not exactly identical.
ex:Alice a ex:Professor, ex:ComitteeMember.
Compare with the example, observe if urn:___param___#name should be a URIRef. If so, make it
a valid URIRef. Otherwise, make it a Literal. Return your answer in json without explanations.
{“answer”:your answer, “is URIRef”:true/false}.

Fig. 9: Example Prompt for sh:qualifiedMaxCount

that is monomorphic to G:ReviewerShape. Therefore, we prompt an LLM as in Fig. 9
to mint a fresh entity name.

C Proof of Strong Normalization

This section proves Theorem 1: if the SHACL manifest S and knowledge graph
G are finite, and there are no recursive shapes [14], then the rewriting system
defined in Sec. 4.2 is strongly normalizing; that is, every rewriting sequence
terminates. Following Corman et al. [14] that a shape is recursive if it refers to
itself; specifically, a shape Σs is recursive if and only if its dependency contains
Σs.

We begin with an informal intuitive argument, followed by a more formal
proof.

Since S is finite and contains no recursive shapes, the shape dependencies in
S form a finite directed acyclic graph (DAG). When rewrite rules are applied,
they correspond to traversals within this DAG: rule 1 moves to a child shape,
while rule 2 remains at the current shape. Because both G and S are finite,
only finitely many applications of rule 2 can occur before the next time rule
1 is applied. As every path in a finite DAG is of finite length, every traversal
sequence must terminate. Thus, the rewriting process is strongly normalizing.

To formalize the above argument, we define a shape sequence starting with
a shape Σs1 as:

σ(Σs1) ::= Σs1 , Σs2 , · · · , Σsk
where Σsi+1

follows Σsi iff there exists j ∈ Isi such that ωjsi = si+1
6. If no such

j exists, then Σsi is the last element of the sequence. We denote the length of
σ(Σs) as len(σ(Σs)).

Assuming S is finite and contains no recursive shapes, the shape dependency
structure forms a directed acyclic graph (DAG). A shape corresponds to a node
in the DAG, and there is a directed edge from shape Σsi to shape Σsi+1

whenever
there is a constraint κjsi = (ξjsi , ω

j
si) such that ωjsi = si+1. Furthermore, there are

no recursive shapes; therefore, the directed graph is acyclic. By the properties
of DAGs:
6 Recall that Isi denotes the index set of constraints of shape Σsi and that the j-th

constraint κj
si = (ξjsi , ω

j
si) refers to another shape Σsi+1 if ωj

si = si+1.

22 T.W. Lin et al.

1. All paths are of finite length.
2. There are finitely many distinct finite paths.

Let Ξ(Σs) denote the set of all shape sequences starting with Σs. By the
DAG properties, Ξ(Σs) is finite and contains only finite sequences. To prove the
strong normalization property of A, we define a decreasing complexity measure
χ for i ∈ Is to show the progress after each rewrite :

χ(VIO(κis,F)) = max
σ(Σs)∈Ξ(Σs)

len(σ(Σs)), (1)

which measures the length of the longest shape sequence starting with Σs. For
compound terms, χ is defined as:

χ(VIO(κis1 ,F1) + VIO(κjs2 ,F2)) = max
{
χ(VIO(κis1 ,F1)), χ(VIO(κjs2 ,F2))

}
χ(VIO(κis1 ,F1) · VIO(κjs2 ,F2)) = max

{
χ(VIO(κis1 ,F1)), χ(VIO(κjs2 ,F2))

}
The rewrite terminates when χ(·) = 0. This corresponds to the intuition that a
path traversal in the DAG reaches the end and terminates. Then, we prove that
χ is decreasing with the rewrite rules. Given VIO(κis,F), where κis = (ξis, ω

i
s) is

the i-th constraint-parameter pair of shape Σs. First, Rule 1: ξis = sh:node or
ξis =sh:property:

VIO(κis,F) → VIO(κ1ωi
s
,F ′) + · · ·+ VIO(κ

nωi
s

ωi
s
,F ′).

See Sec. 4.2 for the detailed definition of rewrite rule 1. Since S is finite by
assumption, the sum on the right-hand side is finite. Additionally, elements in
Ξ(Σωi

s
) are shape sequences with prefix Σωi

s
, · · · , which are subsequences of

elements in Ξ(Σs) with prefix Σs, Σωi
s
, · · · . Therefore, according to eq. (1), χ(·)

is decreased by 1 for every expression on the right hand side of rule 1. This
corresponds to the intuition that rule 1 moves to the child shape in the path
traversal of DAG. Therefore,

χ(VIO(κis,F))− 1 = χ

 ∑
j∈Iωi

s

VIO(κjωi
s
,F)


This implies that χ strictly decreases by 1 after applying rule 1. Next, we analyze
Rule 2: ξis = sh:qualifiedValueShape:

VIO(κis,F) →
∑
f∈F

∑
ϵmf ⊆ψωi

s
(f)

|ϵmf |=|ψωi
s
(f)|−ωh

s +1

∑
g∈Φ(ϵmf)

∏
v∈ϵmf

VIO(κ1g(v), {f}).

See Sec. 4.2 for the detailed definition of rewrite rule 2. Recall that we introduce
artificial shapes, Σv_node and Σf_v_prop for f ∈ F and v ∈ ϵmf . See Sec. 4.2 for
the definition of ϵmf . The targeting functions, value mapping functions, and the
constraints of the artificial shapes are defined as follows.

Title Suppressed Due to Excessive Length 23

– τv_node(G) = {v}, µv_node(v) = {v}, κv_node = {(sh:node, ωis)} and
– τf_v_prop(G) = {f}, µf_v_prop(f) = {v}, κf_v_prop = {(sh:minCount, 1)}.
Note that only κv_node is shape-based and κf_v_prop is not. Moreover, κv_node =
{(sh:node, ωis)} refers to the same shape, Σωi

s
, as the constraint κis = (ξis, ω

i
s)

before rewriting. This corresponds to the intuition that rule 2 stays at the cur-
rent shape in the path traversal of DAG. Lastly, κv_node = {(sh:node, ωis)}
involves the predicate sh:node, which implies rule 1 will be applied following
the application of rule 2.

Since G and S are finite and the number of artificial shapes introduced are
bounded, rule 2 produces a finite sum of products. According to eq. (1), χ(·)
remains constant after the application of rule 2. Therefore,

χ
(
VIO(κis,F)

)
= χ


∑
f∈F

∑
ϵmf ⊆ψωi

s
(f)

|ϵmf |=|ψωi
s
(f)|−ωh

s +1

∑
g∈Φ(ϵmf)

∏
v∈ϵmf

VIO(κ1g(v), {f})

 .

Although applying rule 2 does not decrease χ, the finiteness of S guarantees that
only finitely many such steps occur. In addition, application of rule 1 follows
the application of rule 2. In conclusion, given that rewrite rules either strictly
decrease χ or keep it constant only for finitely many steps, the rewriting system
is strongly normalizing. Every rewrite sequence terminates after finitely many
steps. □

D LLM Pricing

We accessed all the LLMs in January, 2025. The costs are listed in Table 4.

Table 4: Pricing Model. Costs are in USD per 1 million tokens.

Model Input Cost Output Cost
GPT4o $2.5 $10

Claude 3.0 Opus $15 $75
Gemini 1.5 Pro $1.25 $5
Llama 3.1 405B $2.4 $2.4

E Detailed Results

We evaluated four LLMs on three datasets using nine prompting strategies.
Fig. 10 reports the percentage of test cases passing each evaluation metric.

24 T.W. Lin et al.

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

GPT4o

Opus

Gemini

Llama

L
L

M
s

100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100

99 99 99 96 97 97 99 100 99

100 100 100 100 99 99 100 99 100

Brick - Syntactic Validity

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100

94 97 94 97 94 96 94 93 93

99 99 97 97 96 100 97 99 97

LUBM - Syntactic Validity

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

95 98 95 96 96 97

96 95 94 93

91 92 89 93 88 93

81 94 94 78 93 95

QUDT - Syntactic Validity

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

GPT4o

Opus

Gemini

Llama

L
L

M
s

87 92 87 90 90 90 91 94 89

83 90 88 89 90 90 85 87 89

77 89 90 81 88 90 82 92 94

89 90 93 93 91 92 88 92 92

Brick - Semantic Validity

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

84 84 87 89 96 91 86 96 97

83 83 83 86 89 87 84 90 84

67 79 80 74 84 84 66 79 80

86 87 87 91 90 94 90 94 91

LUBM - Semantic Validity

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

85 88 88 87 89 89

90 89 91 89

66 72 65 78 72 81

72 84 86 72 90 91

QUDT - Semantic Validity

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

GPT4o

Opus

Gemini

Llama

L
L

M
s

60 71 67 41 42 42 48 59 56

58 75 74 54 72 69 45 73 68

59 77 74 44 57 62 50 71 76

65 68 71 56 56 62 50 68 69

Brick - Relaxed Isomorphism

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

47 59 56 44 56 53 40 60 60

39 39 39 43 49 43 40 50 43

44 47 53 39 53 51 46 53 53

54 61 60 53 44 50 59 60 56

LUBM - Relaxed Isomorphism

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

60 51 55 57 51 52

59 63 63 58

29 38 31 40 33 36

51 51 50 45 53 52

QUDT - Relaxed Isomorphism

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

Prompting Strategies

GPT4o

Opus

Gemini

Llama

L
L

M
s

60 71 67 41 42 42 48 59 56

58 75 74 54 72 69 45 73 68

59 77 74 44 57 62 50 71 76

65 68 71 56 56 62 50 68 69

Brick - Isomorphism

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

Prompting Strategies

46 53 51 31 46 44 39 59 57

37 37 37 27 34 30 36 47 39

39 34 40 17 23 23 40 40 39

51 56 54 36 26 31 51 51 46

LUBM - Isomorphism

M
G SG S n

G
M
F SF S n

F
M
F
+

SF
+

S n
F
+

Prompting Strategies

59 49 53 55 50 51

58 62 63 57

26 34 27 40 31 34

48 49 47 42 52 51

QUDT - Isomorphism

0 25 50 75 100 (%)

Fig. 10: Performance of each evaluation metric for every combination
of LLM, strategy, and dataset.

F Details on Statistical Analysis

In our statistical analysis in Sec. 7, we seek to determine whether using differ-
ent contexts or LLMs produces different results. In the following, we take the
example of investigating whether using the manifest context M differs from S
to illustrate.

Our data are structured such that multiple measurements are taken across
various datasets, LLMs, and evaluation metrics. This leads to repeated mea-
sures and correlated observations within each grouping factor (e.g., measure-
ments from the same LLM are not independent). Standard linear models assume
that all observations are independent [48], which is violated in this setting. Lin-
ear mixed-effects models (LMMs) are designed to address this issue: they allow
us to model both the systematic effects of our main variables of interest (fixed
effects) and the random variability due to repeated measurements within groups
(random effects). This provides more accurate estimates and valid statistical
inference in the presence of hierarchical data.

Title Suppressed Due to Excessive Length 25

A linear mixed-effects model combines two types of effects:
1. Fixed effects capture the average influence of variables of primary interest that

are consistent across all observations. In our example, the fixed effect is the
manifest context M vs. S, where M is the reference and S is the comparison.

2. Random effects account for random variation attributable to grouping factors,
such as datasets, LLMs, and metrics. These effects capture the correlation and
heterogeneity within groups.
Mathematically, for an outcome yijkl measured for manifest context i, dataset

j, LLM k, and metric l, the model can be written as:

yijkl = β0 + β1 · Contexti + b
(dataset)
j + b

(LLM)
k + b

(metric)
l + ϵijkl,

where
– β0 is the intercept (mean outcome for the reference. In our example, M is

considered the reference that S will compare with),
– β1 is the fixed-effect coefficient for the context (difference between M and S),
– b

(dataset)
j ∼ N (0, σ2

dataset) is the random intercept for dataset j,
– b

(LLM)
k ∼ N (0, σ2

LLM) is the random intercept for LLM k,
– b

(metric)
l ∼ N (0, σ2

metric) is the random intercept for metric l,
– ϵijkl ∼ N (0, σ2) is the residual error.
This formulation enables us to estimate the effect of changing the manifest con-
text from M to S while controlling for the repeated measures and correlation
introduced by datasets, LLMs, and metrics.

The effect of changing the manifest context from M to S is given by the esti-
mated fixed-effect coefficient, β̂1. This value represents the average difference in
the outcome variable when using S instead of M , after accounting for variability
due to datasets, LLMs, and metrics. The estimation of the confidence interval
for this effect quantifies the uncertainty of the estimate. Its calculation can be
found in Pinheiro et al. [35].

A key assumption of linear mixed-effects models is that the residual errors
(ϵijkl) are normally distributed with mean zero and constant variance. This nor-
mality assumption underpins the validity of statistical inference (such as confi-
dence intervals and p-values). To test for normality, we employ the Shapiro-Wilk
(SW) test. The null hypothesis of the SW test assumes that the data follows
a normal distribution. We set the significance level for the SW test at 0.05.
Therefore, if the p-value is greater than 0.05, the residuals are considered to be
normally distributed, satisfying the normality assumption of the LMM. If the
residuals do not pass the normality test, we apply various transformations to the
raw data and refit the LMM. The transformations considered are:

1. Arcsine Square Root Transformation: arcsin
√
x.

2. Logit Transformation: ln x+ϵ
1−p+ϵ , where ϵ = 10−6 is used to avoid numerical

error.

3. Box-Cox Transformation:

{
yλ−1
y , if λ ̸= 0

ln y, else
. Here, λ is optimized to best

approximate a normal distribution.

26 T.W. Lin et al.

If none of the transformations results in normal residuals after refitting the
model, we proceed without any transformation and report the SW p-values di-
rectly. For any transformation applied, we back-transform the estimated effects
to their original scale.

In Tables 5 and 6, we present the raw averages of the reference group and
the comparison group. The critical value for both the estimated effect and the
Shapiro-Wilk test is set to 0.05. If the p-value of the estimated effect is less than
0.05, it indicates a significant difference between the reference group and the
comparison group; otherwise, the cell in the table is shaded with . Similarly,
if the p-value of the SW test is greater than 0.05, indicating that the residuals
are normally distributed, the cell is not shaded; otherwise, it is shaded with .

Title Suppressed Due to Excessive Length 27

T
ab

le
5:

C
on

te
xt

S
el

ec
ti

on
.

in
di

ca
te

s
th

e
av

er
ag

es
of

th
e

re
fe

re
nc

e
an

d
co

m
pa

ri
so

n
gr

ou
p

ar
e

no
t

co
ns

id
er

ed
di

ffe
re

nt
.

in
di

ca
te

s
th

e
re

si
du

al
s

ar
e

no
t

co
ns

id
er

ed
no

rm
al

.

T
re

at
m

en
t

R
ef

er
en

ce
G

ro
up

C
om

pa
ri

so
n

G
ro

up
R

ef
er

en
ce

G
ro

up
A
vg

C
om

pa
ri

so
n

G
ro

up
A
vg

E
st

im
at

ed
E
ff
ec

t
p
-v

al
ue

T
ra

ns
f-

or
m

at
io

n
SW

te
st

p
-v

al
ue

O
ve

ra
ll

M
→
S

M
G

,
M
F

,
M
F

+
S
G

,
S
F

,
S
F

+
68

.3
1%

73
.7

1%
5.

28
%

4
.4

×
1
0
−

1
0

-
1
.8

×
1
0
−

1

S
→
S
n

S
G

,
S
F

,
S
F

+
S
n
G

,
S
n
F

,
S
n
F

+
73

.7
1%

73
.4

1%
-0

.3
0%

6
.7

×
1
0
−

1
-

3
.8

×
1
0
−

7

M
→
S
n
M
G

,
M
F

,
M
F

+
S
n
G

,
S
n
F

,
S
n
F

+
68

.3
1%

73
.4

1%
4.

98
%

4
.8

×
1
0
−

9
ar

cs
in

e
5
.0

×
1
0
−

2

G
→
F

M
G

,
S
G

,
S
n
G

M
F

,
S
F

,
S
n
F

74
.9

3%
69

.3
7%

-3
.9

7%
2
.4

×
1
0
−

5
ar

cs
in

e
5
.6

×
1
0
−

2

F
→
F

+
M
F

,
S
F

,
S
n
F

M
F

+
,
S
F

+
,
S
n
F

+
69

.3
7%

72
.3

1%
2.

94
%

1
.5

×
1
0
−

4
-

8
.4

×
1
0
−

2

G
→
F

+
M
G

,
S
G

,
S
n
G

M
F

+
,
S
F

+
,
S
n
F

+
74

.9
3%

72
.3

1%
-0

.8
6%

3
.3

×
1
0
−

1
-

4
.4

×
1
0
−

6

Sy
nt

ac
ti

c
V
al

id
it
y

M
→
S

M
G

,
M
F

,
M
F

+
S
G

,
S
F

,
S
F

+
96

.8
7%

97
.5

9%
0.

16
%

4
.5

×
1
0
−

1
b
ox

-c
ox

6
.3

×
1
0
−

2

S
→
S
n

S
G

,
S
F

,
S
F

+
S
n
G

,
S
n
F

,
S
n
F

+
97

.5
9%

97
.5

6%
-0

.0
3%

9
.1

×
1
0
−

1
-

1
.5

×
1
0
−

2

M
→
S
n
M
G

,
M
F

,
M
F

+
S
n
G

,
S
n
F

,
S
n
F

+
96

.8
7%

97
.5

6%
0.

96
%

1
.1

×
1
0
−

1
-

3
.5

×
1
0
−

8

G
→
F

M
G

,
S
G

,
S
n
G

M
F

,
S
F

,
S
n
F

99
.0

4%
96

.8
0%

-0
.4

2%
4
.3

×
1
0
−

1
-

2
.2

×
1
0
−

9

F
→
F

+
M
F

,
S
F

,
S
n
F

M
F

+
,
S
F

+
,
S
n
F

+
96

.8
0%

96
.7

4%
-0

.0
6%

9
.2

×
1
0
−

1
-

1
.0

×
1
0
−

9

G
→
F

+
M
G

,
S
G

,
S
n
G

M
F

+
,
S
F

+
,
S
n
F

+
99

.0
4%

96
.7

4%
-0

.3
5%

5
.7

×
1
0
−

1
-

2
.0

×
1
0
−

1
1

Se
m

an
ti

c
V
al

id
it
y

M
→
S

M
G

,
M
F

,
M
F

+
S
G

,
S
F

,
S
F

+
82

.7
0%

87
.8

7%
5.

04
%

2
.4

×
1
0
−

7
-

5
.8

×
1
0
−

1

S
→
S
n

S
G

,
S
F

,
S
F

+
S
n
G

,
S
n
F

,
S
n
F

+
87

.8
7%

87
.7

2%
-0

.1
6%

8
.4

×
1
0
−

1
-

2
.8

×
1
0
−

1

M
→
S
n
M
G

,
M
F

,
M
F

+
S
n
G

,
S
n
F

,
S
n
F

+
82

.7
0%

87
.7

2%
4.

97
%

4
.0

×
1
0
−

6
-

3
.6

×
1
0
−

1

G
→
F

M
G

,
S
G

,
S
n
G

M
F

,
S
F

,
S
n
F

85
.2

1%
86

.1
1%

3.
59

%
5
.8

×
1
0
−

4
ar

cs
in

e
9
.8

×
1
0
−

2

F
→
F

+
M
F

,
S
F

,
S
n
F

M
F

+
,
S
F

+
,
S
n
F

+
86

.1
1%

86
.8

9%
0.

90
%

3
.4

×
1
0
−

1
lo

gi
t

5
.7

×
1
0
−

1

G
→
F

+
M
G

,
S
G

,
S
n
G

M
F

+
,
S
F

+
,
S
n
F

+
85

.2
1%

86
.8

9%
3.

41
%

1
.3

×
1
0
−

2
lo

gi
t

6
.2

×
1
0
−

1

R
el

ax
ed

Is
om

or
ph

is
m

M
→
S

M
G

,
M
F

,
M
F

+
S
G

,
S
F

,
S
F

+
48

.6
7%

56
.8

4%
8.

11
%

1
.5

×
1
0
−

5
-

8
.3

×
1
0
−

1

S
→
S
n

S
G

,
S
F

,
S
F

+
S
n
G

,
S
n
F

,
S
n
F

+
56

.8
4%

56
.3

8%
-0

.4
7%

7
.5

×
1
0
−

1
-

1
.3

×
1
0
−

2

M
→
S
n
M
G

,
M
F

,
M
F

+
S
n
G

,
S
n
F

,
S
n
F

+
48

.6
7%

56
.3

8%
7.

58
%

8
.0

×
1
0
−

6
-

9
.0

×
1
0
−

1

G
→
F

M
G

,
S
G

,
S
n
G

M
F

,
S
F

,
S
n
F

59
.0

4%
50

.6
6%

-7
.6

4%
1
.6

×
1
0
−

4
-

2
.1

×
1
0
−

1

F
→
F

+
M
F

,
S
F

,
S
n
F

M
F

+
,
S
F

+
,
S
n
F

+
50

.6
6%

54
.0

9%
3.

43
%

3
.9

×
1
0
−

2
-

6
.1

×
1
0
−

1

G
→
F

+
M
G

,
S
G

,
S
n
G

M
F

+
,
S
F

+
,
S
n
F

+
59

.0
4%

54
.0

9%
-3

.0
3%

1
.8

×
1
0
−

1
lo

gi
t

7
.5

×
1
0
−

2

Is
om

or
ph

is
m

M
→
S

M
G

,
M
F

,
M
F

+
S
G

,
S
F

,
S
F

+
45

.0
0%

52
.5

3%
7.

34
%

1
.4

×
1
0
−

3
-

1
.4

×
1
0
−

1

S
→
S
n

S
G

,
S
F

,
S
F

+
S
n
G

,
S
n
F

,
S
n
F

+
52

.5
3%

51
.9

7%
-0

.5
6%

7
.6

×
1
0
−

1
-

6
.4

×
1
0
−

2

M
→
S
n
M
G

,
M
F

,
M
F

+
S
n
G

,
S
n
F

,
S
n
F

+
45

.0
0%

51
.9

7%
7.

28
%

1
.7

×
1
0
−

3
lo

gi
t

6
.9

×
1
0
−

2

G
→
F

M
G

,
S
G

,
S
n
G

M
F

,
S
F

,
S
n
F

56
.4

2%
43

.9
1%

-1
3.

67
%

3
.4

×
1
0
−

1
4

-
7
.8

×
1
0
−

1

F
→
F

+
M
F

,
S
F

,
S
n
F

M
F

+
,
S
F

+
,
S
n
F

+
43

.9
1%

51
.5

1%
7.

60
%

2
.2

×
1
0
−

5
-

1
.7

×
1
0
−

1

G
→
F

+
M
G

,
S
G

,
S
n
G

M
F

+
,
S
F

+
,
S
n
F

+
56

.4
2%

51
.5

1%
-3

.2
7%

1
.2

×
1
0
−

1
-

1
.3

×
1
0
−

1

28 T.W. Lin et al.

T
ab

le
6:

L
L
M

S
el

ec
ti

on
in

di
ca

te
s

th
e

av
er

ag
es

of
th

e
re

fe
re

nc
e

an
d

co
m

pa
ri

so
n

gr
ou

p
ar

e
no

t
co

ns
id

er
ed

di
ffe

re
nt

.
in

di
ca

te
s

th
e

re
si

du
al

s
ar

e
no

t
co

ns
id

er
ed

no
rm

al
.

T
re

at
m

en
t

R
ef

er
en

ce
G

ro
up

A
vg

C
om

pa
ri

so
n

G
ro

up
A
vg

E
st

im
at

ed
E
ff
ec

t
p
-v

al
ue

T
ra

ns
f-

or
m

at
io

n
SW

te
st

p
-v

al
ue

O
ve

ra
ll

G
P
T

4o
→

L
la

m
a

3.
1

40
5B

73
.3

2%
73

.5
2%

0.
20

%
8
.1

×
1
0
−

1
-

2
.9

×
1
0
−

6

G
P
T

4o
→

C
la

ud
e

3.
0

O
pu

s
73

.3
2%

73
.4

7%
-0

.2
1%

2
.9

×
1
0
−

1
lo

gi
t

5
.7

×
1
0
−

2

G
P
T

4o
→

G
em

in
i
1.

5
P
ro

73
.3

2%
67

.3
5%

-8
.6

0%
1
.0

×
1
0
−

1
5

ar
cs

in
e

1
.8

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
C

la
ud

e
3.

0
O

pu
s

73
.5

2%
73

.4
7%

-0
.8

9%
2
.9

×
1
0
−

1
-

7
.3

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
G

em
in

i
1.

5
P
ro

73
.5

2%
67

.3
5%

-6
.1

7%
7
.0

×
1
0
−

1
2

-
5
.5

×
1
0
−

1

C
la

ud
e

3.
0

O
pu

s
→

G
em

in
i
1.

5
P
ro

73
.4

7%
67

.3
5%

-5
.4

3%
8
.6

×
1
0
−

8
-

5
.7

×
1
0
−

1

Sy
nt

ac
ti

c
V
al

id
it
y

G
P
T

4o
→

L
la

m
a

3.
1

40
5B

99
.0

4%
96

.3
8%

-1
.3

3%
3
.2

×
1
0
−

9
b
ox

-c
ox

7
.2

×
1
0
−

2

G
P
T

4o
→

C
la

ud
e

3.
0

O
pu

s
99

.0
4%

99
.0

0%
-0

.3
5%

8
.0

×
1
0
−

2
-

9
.2

×
1
0
−

8

G
P
T

4o
→

G
em

in
i
1.

5
P
ro

99
.0

4%
95

.1
2%

-3
.9

2%
2
.1

×
1
0
−

1
9

-
8
.9

×
1
0
−

2

L
la

m
a

3.
1

40
5B

→
C

la
ud

e
3.

0
O

pu
s

96
.3

8%
99

.0
0%

1.
16

%
1
.5

×
1
0
−

4
-

4
.1

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
G

em
in

i
1.

5
P
ro

96
.3

8%
95

.1
2%

-1
.9

5%
2
.6

×
1
0
−

5
b
ox

-c
ox

4
.0

×
1
0
−

1

C
la

ud
e

3.
0

O
pu

s
→

G
em

in
i
1.

5
P
ro

99
.0

0%
95

.1
2%

-3
.5

1%
3
.2

×
1
0
−

1
5

-
2
.8

×
1
0
−

2

Se
m

an
ti

c
V
al

id
it
y

G
P
T

4o
→

L
la

m
a

3.
1

40
5B

89
.4

2%
88

.5
4%

-0
.7

7%
4
.3

×
1
0
−

1
ar

cs
in

e
1
.7

×
1
0
−

1

G
P
T

4o
→

C
la

ud
e

3.
0

O
pu

s
89

.4
2%

87
.2

3%
-2

.3
0%

2
.9

×
1
0
−

3
-

1
.4

×
1
0
−

1

G
P
T

4o
→

G
em

in
i
1.

5
P
ro

89
.4

2%
79

.5
8%

-9
.8

3%
2
.4

×
1
0
−

1
0

-
7
.5

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
C

la
ud

e
3.

0
O

pu
s

88
.5

4%
87

.2
3%

-2
.5

3%
4
.8

×
1
0
−

4
-

9
.6

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
G

em
in

i
1.

5
P
ro

88
.5

4%
79

.5
8%

-8
.9

6%
7
.6

×
1
0
−

9
-

1
.9

×
1
0
−

1

C
la

ud
e

3.
0

O
pu

s
→

G
em

in
i
1.

5
P
ro

87
.2

3%
79

.5
8%

-7
.4

0%
1
.2

×
1
0
−

5
-

2
.1

×
1
0
−

1

R
el

ax
ed

Is
om

or
ph

is
m

G
P
T

4o
→

L
la

m
a

3.
1

40
5B

53
.6

3%
56

.8
3%

3.
21

%
7
.7

×
1
0
−

2
-

6
.5

×
1
0
−

2

G
P
T

4o
→

C
la

ud
e

3.
0

O
pu

s
53

.6
3%

55
.2

7%
1.

84
%

5
.0

×
1
0
−

1
-

1
.1

×
1
0
−

1

G
P
T

4o
→

G
em

in
i
1.

5
P
ro

53
.6

3%
50

.6
7%

-2
.9

6%
2
.7

×
1
0
−

1
-

5
.2

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
C

la
ud

e
3.

0
O

pu
s

56
.8

3%
55

.2
7%

-1
.7

1%
4
.7

×
1
0
−

1
-

5
.1

×
1
0
−

2

L
la

m
a

3.
1

40
5B

→
G

em
in

i
1.

5
P
ro

56
.8

3%
50

.6
7%

-6
.1

7%
1
.1

×
1
0
−

3
-

6
.3

×
1
0
−

1

C
la

ud
e

3.
0

O
pu

s
→

G
em

in
i
1.

5
P
ro

55
.2

7%
50

.6
7%

-3
.8

9%
1
.6

×
1
0
−

1
-

1
.8

×
1
0
−

1

Is
om

or
ph

is
m

G
P
T

4o
→

L
la

m
a

3.
1

40
5B

51
.2

1%
52

.3
3%

1.
26

%
5
.4

×
1
0
−

1
b
ox

-c
ox

5
.4

×
1
0
−

2

G
P
T

4o
→

C
la

ud
e

3.
0

O
pu

s
51

.2
1%

52
.3

6%
1.

50
%

5
.9

×
1
0
−

1
-

2
.7

×
1
0
−

1

G
P
T

4o
→

G
em

in
i
1.

5
P
ro

51
.2

1%
44

.0
4%

-7
.1

7%
2
.1

×
1
0
−

2
-

4
.8

×
1
0
−

1

L
la

m
a

3.
1

40
5B

→
C

la
ud

e
3.

0
O

pu
s

52
.3

3%
52

.3
6%

-0
.1

9%
9
.3

×
1
0
−

1
-

7
.4

×
1
0
−

2

L
la

m
a

3.
1

40
5B

→
G

em
in

i
1.

5
P
ro

52
.3

3%
44

.0
4%

-8
.2

9%
1
.9

×
1
0
−

5
-

4
.2

×
1
0
−

1

C
la

ud
e

3.
0

O
pu

s
→

G
em

in
i
1.

5
P
ro

52
.3

6%
44

.0
4%

-7
.7

5%
2
.2

×
1
0
−

3
-

6
.7

×
1
0
−

1

	Systematic Evaluation of Knowledge Graph Repair with Large Language Models

