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ABSTRACT

Portable applications support the write once, deploy everywhere
paradigm. This paradigm is particularly attractive in building ap-
plications, where current practice involves the manual deployment
and configuration of such applications, requiring significant engi-
neering effort and concomitant costs. This is a tedious and error-
prone process which does not scale well. Notwithstanding recent
advances in semantic data modelling that allow a unified represen-
tation of buildings, we still miss a paradigm for deploying portable
building applications at scale. This paper introduces a portable pro-
gramming model for such applications, which we examine in the
context of Fault-Detection and Diagnosis (FDD). In particular, we
look at the separation of the FDD logic and the configuration with
specific data inputs. We architect a software system that enables
their self-configuration and execution across various building con-
figurations, expressed in terms of Brick metadata models. Our initial
results from authoring and executing APAR (AHU Performance
Assessment Rules) on multiple AHUs of two museums demonstrate
the potential of our model to reduce repetitive tasks and deployment
costs of FDD applications.

CCS CONCEPTS

- Software and its engineering — Abstraction, modeling and
modularity; « Information systems — Graph-based database
models.

KEYWORDS

Programming, FDD, Portability, Scalability, Brick, RDF, SHACL,
Metadata, Semantic Web, Ontologies

ACM Reference Format:

Dimitris Mavrokapnidis, Gabe Fierro, Ivan Korolija, and Dimitrios Rovas.
2023. A Programming Model for Portable Fault Detection and Diagnosis. In
The 14th ACM International Conference on Future Energy Systems (e-Energy
’23), June 20-23, 2023, Orlando, FL, USA. ACM, Coimbra, Portugal, 5 pages.
https://doi.org/10.1145/3575813.3595190

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

e-Energy '23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0032-3/23/06...$15.00
https://doi.org/10.1145/3575813.3595190

Gabe Fierro
Colorado School of Mines
gtfierro@mines.edu

Dimitrios Rovas
University College London
d.rovas@ucl.ac.uk

1 INTRODUCTION

The value and insights generated by data-driven services are being
increasingly appreciated in the context of the built environment.
For example, Fault Detection and Diagnosis (FDD) applications use
building data to uncover hidden system inefficiencies and iden-
tify opportunities to reduce energy costs and increase occupants’
comfort [11, 22]. However, the configuration of such applications re-
quires discovering and accessing data from diverse data sources [14]
including Building Information Models (BIM) [21] and Building
Management Systems (BMS) [18]. The challenge of discovering
and reusing building data, combined with the poor state of docu-
mentation of many BMS systems, has led to limited adoption of
such approaches in the majority of buildings [20]. As a result, many
applications are still developed on an ad-hoc basis and are hardly
reusable in different buildings [11, 20].

To address these challenge of data representation under a unified
model, semantic data models such as Brick [7], Project Haystack [5],
Real Estate Core [16], and ASHRAE 223p [12] have emerged with
the purpose of making building (meta-)data easily discoverable
and accessible through uniform and machine-interpretable meta-
data representations. Nevertheless, despite the potential of those
advancements to enable application portability, we still miss the
paradigm for developing applications once and executing them in
multiple buildings. This paper introduces a programming model
for authoring and reusing portable building applications focusing,
without loss of generalisation, on the case of FDD.

1.1 Requirements for portable applications

We identify the following challenges (C1-C4) in developing portable
building applications.

C1: Data availability: The need to configure a building applica-
tion depending on the available data.

C2: Model expressivity: The ability of the modeller to discover
the required semantic metadata across different building
configuration.

C3: System applicability: The need to ensure whether an appli-
cation is usable across various building system configuration.

C4: Data modalities: Ensure proper units, temporal resolutions,
and temporal semantics from data sources.

In this paper, we focus mainly on the case of rule-based FDD appli-
cations. To illustrate the challenges of making FDD rules portable,
we use the running example of rule Ry from the Air-Handling Unit
(AHU) Performance Assessment Rules (APAR) [25]. Ry which veri-
fies that an AHU’s supply air temperature is greater than the mixed
air temperature plus the temperature drop over the supply fan
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when the AHU is in heating mode. The rule can be expressed as
the following inequality:

Ry : Tso < Tna + ATs — € (1)
To configure and execute this rule on a given building, the devel-
oper must determine if there are any AHUs in the building (C3),
determine the presence and identity of the mixed and supply air
temperature sensors in those AHUs (C1), author a Brick query to
discover those AHUs and sensors in a building (C2), and finally
fetch the data and perform any unit conversion and data cleaning
(C4). This intensive and largely manual process must be repeated
for each AHU in each building where the developer intends the
rule to run [10].

Recent work on semantic metadata has offered new ways for
intelligent building software to become wholly or partially self-
configuring [15, 17]. Still, it requires developers to become familiar
with an “alphabet soup” of different technologies: RDF[3], OWL[1],
SPARQLI2], and so on. Our proposed programming model for
portable FDD applications separates the expression and execution
of FDD rules from how those rules are configured for each build-
ing. This increases the usability of portable building software and
enables cheaper deployment of fault detection rules.

2 BACKGROUND AND PRIOR WORK

We discuss recent efforts to enable “portable” applications in smart
buildings using recent metadata models.

2.1 Building metadata models

Past work has established the difficulty of writing data-driven ap-
plications for buildings, due in part to a lack of standard digital
representations that facilitate data discovery [9, 10]. Contempo-
rary research develops standardized representations that address
this lack of introspection and discoverability, including Project
Haystack [5], Brick Schema [7], Real Estate Core (REC) [16], and
the Building Topology Ontology (BOT) [24], amongst others [23].

These representations work by abstracting complex and highly-
interrelated cyberphysical systems like HVAC, lighting, electrical
and plumbing systems into directed graph structures. These graphs
provide a machine-readable interface that directly encodes the iden-
tity of data sources, building assets, and the relationships between
them. Applications query these graphs to configure their operation;
this involves retrieving the composition and topology of building
systems and identifying data sources or control inputs to be used
in the application.

Despite the promising use of these emerging metadata standards,
accessing the required data for specific applications remains chal-
lenging. For example, Bhattacharya et al. reported an inability to
run three simple diagnostics applications in a portfolio of 10 build-
ings due to a lack of the required semantic information richness [9].

2.2 Portable Application Platforms

A significant challenge for enabling the deployment of building
applications at scale is the time-consuming and site-specific effort
of configuring an application to run on a given building. Recent
analytics platforms offer several methods for enabling the mass-
customization of applications: the (semi-)automated process of con-
figurating an application through the use of semantic metadata [7].
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Building Application Stack (BAS) [19] provides a fuzzy query
interface over a graph of building components and control inter-
faces. BuildingDepot [26] adopts a template-based approach which
restricts user applications to those that can be expressed using a
pre-defined sets of building entities and data sources. This trades
expression of arbitrary applications for a simplified configuration
experience. Mortar [15] requires tens of lines of code to express
queries and application configuration logic; SkyFoundry [6] and En-
ergon [17] use non-standard and purpose-built programming and
query languages to reduce lines of code, but still require developer-
driven reconfiguration between deployment sites. [8] proposed a
query relaxation algorithm to improve the retrieval of building data
through SPARQL results and, therefore, increase query portability
across different building configurations.

These approaches often address only the relationship between
descriptions of the building and the actual telemetry, leaving the
implementation of application portability to the developer. Our
proposed approach separates the portability mechanism from the
expression of the application logic, simplifying the development
experience.

3 PORTABLE PROGRAMMING MODEL

In this section we present our formalism for expressing portable
rule-based fault detection and diagnosis applications. Our program-
ming model eliminates the complex and site-specific configuration
effort borne by other approaches by decoupling the identity of log-
ical quantities used in the rule (e.g. supply air temperature) from
their definition in the underlying building. Developers express FDD
rules using portable computational quantities (CQs) which are de-
fined by functions over an underlying formal representation of
a building, its assets and data sources. Individual CQs access this
formal representation for a particular building to resolve themselves
to a real-valued quantity for rule evaluation.

3.1 Computational Quantities

We express rules in terms of computational quantities. A compu-
tational quantity (CQ) is a portable definition of a physical quantity
in the building such as the supply air flow rate or the mixed air
temperature of an air-handling unit. A CQ is portable because it
encodes multiple ways that a quantity may be found in the building:
a quantity may be (a) observed directly by sensors or other digital
I/O points from the building management system, (b) computed
indirectly through other observations or CQs, or (c) assumed to be
a default value. Resolving a CQ on a building model identifies and
executes a specific programmatic implementation for returning the
value of the desired quantity in that building; thus, rule develop-
ers do not have to handle the complexity of expressing a rule in a
portable manner.

Formally a CQ is a function CQ : G — R that returns a real-
valued quantity when executed against a building’s Brick model;
this quantity can be used in any subsequent computation like an
FDD rule. Each CQ is defined by a set of possible resolutions; a
resolution is an executable plan for producing a value from the
building that can be used in an FDD rule calculation. We define
three types of CQ resolutions: graph, computational, and default.
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A Graph CQ resolution is a SHACL [4] shape that semantically
describes the set of ways a CQ could be found in a Brick model.
For example, Ty, in our running example could be resolved as an
instance of the Brick class Mixed Air Temperature Sensor associated
with an instance of Brick’s AHU class.

A Computational CQ resolution is a function over other CQs that
allows expressing computational relationships between those CQs.
In our running example, if a sensor could not be found in the graph,
the mixed air temperature could be estimated using the equation:
Tna = Toq * Foa + Tra * Frq where Tyq/T,q & Foq/Frq stand for the
Outside/Return Air Temperature & Air Flow Rate respectively.

A Default or user-defined CQ resolution is a human-provided
default value. This accounts for rule parameters (€ in our running
example), unknown but assumable quantities (ATf in our running
example), and other constants.

A CQ is expressed as a “decision tree” of possible resolutions.
These are ordered by the accuracy and relevancy of each resolu-
tion: typically, graph resolutions that identify actual values in the
building management system are preferred over computational res-
olutions, which are preferred over default values. Resolving a CQ on
a graph involves determining the most preferred resolution for that
CQ and returning the corresponding value. Different resolutions
may result in differing accuracy in the estimation or measurement
of the actual quantity. To account for this, the decision tree can be
structured to prefer certain resolutions over others.

3.2 Expressing Portable Rules

We express an FDD rule R; as a function over a graph G and a set

of n computational quantities CQy,...,CQp.
resolve execute
Ri : (G,f(CQl, .. ’CQH)) — f/(vlr .. ’Un) — {T? F}

@
Above, the function f(...) is the portable site-agnostic expression
of the FDD rule. Figure 1 contains an example of such a rule: note
that the rule definition is similar to the original mathematical for-
mulation in §1.1, and that the rule definition contains no site-specific
logic. A function f(...) is ported to a new building through the pro-
cess of resolution. Resolving a rule produces a new function f’(...)
in which each of the CQs has been resolved to an actual real-valued
quantity that can be used for evaluating the rule (CQ; : G — v; € R).
In case that a CQ; cannot be resolved, the platform produces an
error that the rule cannot be executed on G.

In Figure 1, expressions like Tsa(G) perform the resolution of
the CQ Tsa on the graph G. For simplicity we consider boolean-
valued FDD rules which return true if a fault was detected, but
the proposed programming model extends easily to other types
of output. Figure 1 illustrates the definition and evaluation of two
APAR rules in terms of our reference implementation.

1 # import provided definitions of common computational quantities
2 from APAR.computational_quantities import Tsa, Tma, Tsf, Toa
3 def rulel(G: Graph) -> bool:

4 return Tsa(G) < Tma(G) + Tsf(G) - € # € is the error threshold
5 def rule5(G: Graph) -> bool:
6 return Toa(G) > Tsa(G) - Tsf(G) + € # € is the error threshold

Figure 1: Python implementation of Rule 1 and Rule 5 from
APAR [25] using the proposed portable programming solu-
tion. Tsa, Tma, Tsf, and Toa are CQs
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Figure 2: Portable FDD software architecture
4 IMPLEMENTATION

Our portable programming model acts as an interface between
any rule-based FDD algorithm and its actual implementation in
software. In this section, we explain our Graph CQ resolution mech-
anism, which enables the portable expression of data requirements
across many different Brick models and therefore buildings. In con-
trast to prior mechanisms [8, 15, 17] we enable portability without
placing an undue burden on the rule developer. We then explore
the proposed CQ resolution algorithm in the context of APAR Ry
([25]) and demonstrate its self-configuration and execution on two
buildings and 24 AHU components.

4.1 Resolution of Graph CQs

All the potential Graph CQ resolutions are implemented as SHACL [4]
shapes during the specification of a rule. These incorporate various
semantic descriptions of how the Graph CQ may be expressed in
a Brick model. For example, the "Mixed Air Temperature” CQ can
be expressed in a Brick model either as a point of an AHU or as a
point of a "Mixed Damper" that is part of the same AHU. The shape
authoring process is facilitated through user-friendly functions that
transform path descriptions into SHACL shapes.

During the resolution of a rule, whenever a successful path is
discovered, we enrich the Brick model with an additional seman-
tic relationship that creates uniform structures within each Brick
model. This allows us to automate the extraction of Graph CQs
without model-specific queries.

4.2 Self-configuration

Recall that a rule is expressed as a set of computational quantities.
The execution of that rule (e.g. in Equation 2) involves resolving
each of the CQs on the target graph G by traversing the decision tree
associated with each CQ. Figure 2 illustrates a high-level overview
of how our system resolves and executes a portable FDD library.

The self-configuration process transforms a portable specification
of an FDD rule into an executable implementation of that rule on
a particular Brick model. The implementation describes the CQs
required to run the rule, which have either been discovered in the
model as Graph CQs or provided as default CQs.

Figure 3 illustrates how a rule specification is self-configured to
produce an executable implementation. The left part of Figure 3
presents an example of a specification of a self-configurable rule.
In particular, rule R; is defined by three computational quantities
CQ1, CQ2, CQ3, each of which is expressed as a decision tree of
potential resolutions. To elucidate the self-configuration process,
we focus on CQj. If CQ; cannot be resolved as a Graph CQ, we
can then look for its successful resolution as Computational CQ
which requires the resolution of CQ4 and CQs. In the case those
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Figure 3: Specification of a self-configurable rule. CQs can be
reused across multiple rules

CQs cannot be resolved, then the user may provide a default value
to resolve it. Overall, the variety of possible resolutions is defined
by the application developer according to the logic of the FDD rules.

The right part of Figure 3 illustrates the implementation of
rule Ry for a specific building (expressed in a graph). The self-
configuration of R; results in a specific implementation: Ry =
(CQ2,CQs5,CQs, CQ7,CQs) where CQs5, CQg, CQ7 are successfully
resolved as Graph CQs over the Brick model of a particular building;
CQ», CQg are Default CQs.

4.3 Evaluation

We evaluate our programming model by determining how well it
can express rules from the industry-standard APAR ruleset [25]. We
implement these rules using our programming model and execute
them over two real buildings, each represented by a Brick model,
comprising 24 air handling units (AHUs).

Figure 1 contains the implementation of two different APAR
rules; for space reasons, we elide the implementation of the other
APAR rules. This demonstrates that our programming model is
succinct: it can express a single rule in 2 lines of code; this might
take 5-10 lines of code in Energon [17] and 50-100 lines of code in
Mortar [15]. The code sample also demonstrates that it is possible
to reuse a library of CQs to implement multiple rules.

To demonstrate the portability capabilities of our proposed model,
we show the results of executing Rule Ry over 3 AHUs in Table 1.
Columns 2 and 3 of the table show how the resolution of the rule
differed across 3 different AHUs. AHU1 contains a mixed air tem-
perature sensor which was found by the CQ resolution; however,
because AHUS5 lacks this sensor, the CQ resolution identifies a com-
bination of air flow and air temperature sensors to estimate the
mixed air temperature. AHU2 lacks these flow sensors, so the CQ
resolution identifies a default mixing ratio of 50:50 for estimating
the mixed air temperature. These results demonstrate the ability of
our programming model to configure rules automatically accord-
ing to the available data. Figure 2 displays the results of executing
our CQ-based rules over 24 AHUs, showing that the model can
effectively perform fault detection in real settings.

4.4 Discussion

Developing portable applications using Mortar[15], Energon[17],
depends on the ability of the rule developer to write successful
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AHU Implementation of R; : Tsa < Tyna + ATyp — €
AHU1 GraphCQ (Tma) brick:Mixed_Air_Temp.
(Bldg1)

GraphCQ (Tra) brick:Return_Air_Temp.
AHU5 GraphCQ (Toa) brick:Outside_Air_Temp.
(Bldg1) GraphCQ (Fra) brick:Return_Air_Flow

GraphCQ (Foa) brick:Outside_Air_Flow

GraphCQ (Tra) brick:Return_Air_Temp.
AHU?2 GraphCQ (Toa) brick:OQutside_Air_Temp.
(Bldg2) DefaultCQ (Fra) 0.5

DefaultCQ (Fpa) 0.5

GraphCQ (Tsa) brick:Supply_Air_Temp.
All AHUs DefaultCQ (ATy) 1.0

DefaultCQ (¢) 1.1

Table 1: Implementation Description of Portable APAR R;

‘ Rulel Rule2 Rule3 Rule4
# AHUs with Fault | 11/24  9/24 1524 8/24
Table 2: The number of faulted AHUs found across two build-
ings and 24 AHUs with the same rule implementations

queries on the graph model. Instead, our model shifts the burden
of configuration to the CQ specification process. Rule developers,
unlike in prior systems, do not need to write any queries or handle
the portability of applications themselves.

Writing FDD rules only requires a few lines of code (Figure 1);
in prior systems these rules would often require multiple queries.
For example, AHU2 and AHUS5 in Table 1 do not contain the ex-
pected brick:Mixed_Air_Temp. sensor. In other platforms, devel-
opers would have to re-write the query to consider alternative data
sources or assign default values — both of these cases are handled
automatically by the CQ resolution mechanism. In our proposed
model, developers specify the application logic once using portable
abstractions of building data.

Our programming model relies on a data access service that
resolves identifiers in the graph to the actual telemetry. Configuring
the data access service and Brick model are building-specific one-
time costs necessary for data-driven applications [13, 15, 17, 26].

5 CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a new programming model for
portable rule-based FDD applications that eliminates the need for
rule authors to explicitly query metadata models. We have em-
ployed our model to express and execute standard FDD rules in two
different buildings, demonstrating its potential to reduce manual
and repetitive tasks for rule developers, thereby accelerating the
adoption of FDD applications at scale. Our next steps include the
implementation of our programming model in further FDD rulesets
and execution in larger and more diverse building portfolios.
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