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Access to large amounts of real-world data has long been a barrier to the development and evaluation of
analytics applications for the built environment. Open data sets exist, but they are limited in their span (how
much data is available) and context (what kind of data is available and how it is described). Evaluation of such
analytics is also limited by how the analytics themselves are implemented, often using hard-coded names of
building components, points and locations, or unique input data formats.

To advance the methodology for how such analytics are implemented and evaluated, we present Mortar: an
open testbed for portable building analytics, currently spanning 90 buildings and containing over 9.1 billion
data points. All buildings in the testbed are described using Brick, a recently developed metadata schema,
providing rich functional descriptions of building assets and subsystems. We also propose a simple architecture
for writing portable analytics applications that are robust to the diversity of buildings and can configure
themselves based on context. We demonstrate the utility of Mortar by implementing 11 applications from the
literature.
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1 INTRODUCTION

Building analytics applications vary in complexity from simple algorithms that only require a few
directly-related data streams to algorithms using complex white- or grey-box models, requiring
detailed information about the building. This information typically must be acquired from diverse
sources, such as from a building automation system, architectural and mechanical drawings, opera-
tions and maintenance documents, and human input from the building operator. Implementations
of analytics applications are often done as “one-offs” because of the high degree of site-specific
application logic. For example, this logic can be based on the types of subsystems in the building,
the names of BMS points needed for the application, and how those BMS points relate to spatial
elements of the building. As a result, many analytics algorithms go largely untested and unevaluated
beyond the handful of buildings (or simulations) the algorithm was developed against.

This pattern produces implementations that suffer from bias and have little generalizability [19].
A recent evaluation of U.S. building energy benchmarking and transparency programs [27] found
that “indications of [energy] savings should be considered preliminary... because of the limited
period of analyses and inconsistencies among analysis methods for the various studies.” This is a
lost opportunity for robust evaluations of analytical applications.

The existence of a large collection of building data would grant data scientists, algorithm de-
velopers, and building managers the opportunity to empirically evaluate their work on a more
diverse body of buildings. Standard, open data sets and workloads exist in many other areas (such
as TPC-C [37] for relational databases and MNIST [23] for digit recognition). There are several
existing and prior efforts working to provide such an open data set for buildings [6, 7, 13, 21, 26, 40].
However, these data sets are limited in their span (how much data is available) and context (what
kind of data is available and how it is described), which limits their efficacy for the evaluation of
analytics applications.

In addition to the need for comprehensive, up-to-date, and well-annotated data sets, we also
need to make applications portable in order to minimize the effort in running analytics applications
against different buildings. Portable applications can nimbly provide retrocommissioning, fault
detection, and diagnostics across a wide range of buildings with minimal reconfiguration.

The goal of this work is to address these challenges by providing an open testbed and a platform
for storing, describing, updating, discovering, and retrieving building data. The testbed currently
spans 90 buildings and contains over 9.1 billion data points. We utilize and extend Brick [5], a
recently developed metadata schema that provides rich functional descriptions of building assets
and subsystems, to describe not only data streams but the mechanical, electrical, logical, and
functional context of those streams within all buildings in the testbed. Using this standardized and
extensible method of describing buildings, we show that it is possible to create a data platform that
can subsume the heterogeneous data produced by the built environment. Further, we also present
an architecture for portable and extensible analytics applications that leverages Brick to simplify
the development and evaluation of these applications across multiple buildings.

Together, the testbed and the portable architecture provide a platform, named Mortar, which
lowers the integration cost of deploying new analytics applications and acts as a vehicle for
reproducible evaluations. We evaluate Mortar by implementing a representative set of analytics
applications. Further, we release these implementations as well as the data sets and Brick models
that are part of the testbed for others to leverage and build upon.
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The Mortar platform hosts the metadata and timeseries data for a growing collection of buildings.
It provides access to that data for a repository of open-source, vetted, and robust implementations
of building analytics algorithms!. We intend for this platform to be used by algorithm developers
and researchers for the implementation and evaluation of analytics applications, and by building
managers who upload and describe their building data in order to run any available analytics to
manage their portfolio. The timeseries data, Brick models and analytics library mentioned in this
paper are freely available as part of the Mortar platform (Available online at https://mortardata.org/
with creation of a free account); the platform will soon support user-provided datasets and metadata
models.

The contributions of this paper are:

(1) The design and implementation of a platform for the development and evaluation of portable
building analytics

(2) A modular and extensible architecture for portable analytics applications

(3) A data set of 90 buildings containing over 9.1 billion data points, where the relationships
between data points are well described and annotated using Brick models

This paper is an extension of a previously published work [15] with the following additions:

(1) A discussion of the design of the Mortar query processor implementation (§4), which has
been deployed in production serving over 25,000 dataset requests in the last few months

(2) The design and implementation of Mortar’s declarative interface for describing large multi-
dimensional data sets (§4)

(3) A set of case studies detailing the experience and results of implementing six applications
using Mortar (§8)

The remainder of the paper is organized as follows. §2 provides a brief background on Brick. §3
and §4 detail the design and implementation of Mortar. §5 presents the architecture of portable
applications. A detailed description of the building data sets is presented in §6, followed by the
evaluation of Mortar in §7 and the application case studies in §8. Related work is presented in §9
and the paper concludes in §10 outlining future work.

2 BRICK

Brick [5] is an open-source ontology providing a unified semantic representation of building
assets, subsystems, and the relationships between them. Brick has two components: an extensible
class hierarchy representing the physical and logical entities in buildings, and a minimal set of
relationships that capture the connections between entities. A Brick model of a building is a labeled,
directed graph in which the nodes are entities and the edges are relationships.

2.1 Why Brick?

Brick has several advantages over alternative metadata representations such as Project Haystack [1]
and IFC [8].

(1) Completeness: Brick’s class hierarchy can describe the diverse array of equipment, points,
subsystems, and other physical or logical assets found in buildings. The class hierarchy can
be extended to define new or unusual entities.

(2) Flexibility: by utilizing the class hierarchy and transitive relationships in queries against
Brick models, applications can remain agnostic to the level of detail of a Brick model. This
allows applications to run on buildings whose Brick model may not be fully specified, but
contains the points and relationships necessary for the application to run.

! Available online at https://github.com/SoftwareDefinedBuildings/mortar-analytics
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(3) Consistency: the minimal set of relationships defined by Brick and the constraints defined by
the Brick ontology help reduce variability in how the same concepts are expressed across
independent Brick models.

(4) Queryability: applications use the powerful SPARQL [18] language to query Brick models.
SPARQL enables applications to traverse the complex and heterogeneous graph structures
that typify Brick models and retrieve the information they need to operate. [18] provides a
full explanation of the SPARQL language and [14] contains a discussion of the application of
SPARQL to Brick.

These properties make Brick an ideal candidate for addressing the metadata-related shortcomings

in existing platforms. Further, Brick lays the foundation for developing and evaluating portable
analytics applications, which is described in detail in §5.

2.2 Brick Extensions

Although the current release of the Brick schema (1.0.3) can describe all of the equipment and
points contained in the testbed, it does not contain site-level properties such as building typology
that are helpful for qualifying which sites to include in an analysis. Table 1 lists the properties we
have added to Brick; these changes are being collected into a formal proposal for inclusion into an
upcoming release of Brick.

’ Property Definition
hasSite/isSiteOf | brick:Site entity to capture points belonging to a single facility

noaa Nearest NOAA weather stations. Gives rough location of site

area Floor area (typically m? or ft2). Can be associated with brick:Site
(for total area) or brick:Floor, brick:Room, etc for more fine-grained
annotation

adjacentTo Adjacency for rooms, other spaces
uuid Timeseries identifier used by the timeseries database
hasUnit Engineering units for the associated timeseries

Table 1. Proposed set of Brick extensions for capturing building properties

3 MORTAR SYSTEM ARCHITECTURE

Mortar stands for Modular Open Reproducible Testbed for Analysis & Research. It provides a
platform for the development and evaluation of portable building analytics applications. Mor-
tar contains timeseries data consisting of historical values of the sensors, actuators, setpoints and
other data points for a large number of buildings. Mortar manages a Brick model for each of these
buildings, which describes the properties of the building as well as the equipment, sensors, subsys-
tems and relationships within that building. Mortar also includes a library of analytics applications,
structured according to the architecture detailed in §5. These applications access timeseries data
by executing queries against the Brick model to refer to relevant collections of data streams. This
methodology enables portable analytics applications, made more robust through evaluation against
the diverse population of buildings in the testbed.

The architecture of Mortar is driven by the need to a) link historical timeseries data with its
context as captured by a Brick model, b) execute code that retrieves segments of timeseries data
filtered by context, and c) provide those features at the scale of tens or potentially hundreds
of buildings. Mortar is assembled from a family of open-source software. Mortar has four main
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components: a timeseries storage, a Brick model storage, a query processor, and an application
execution environment (as shown in Figure 1).

Timeseries storage. The testbed manages the distribution and updating of data using a full
timeseries database instead of distributing data in static file form (such as CSVs). At the testbed’s
current scale of over 145 GB of 64-bit floating-point values and 64-bit nanosecond-precision
timestamps, it is unreasonable to expect users to download the data themselves. Many timeseries
databases offer filtering and aggregation features that allow applications to specify and download
just the data they need for their execution.

The process of appending new data to an existing stream is also made much easier through the
use of a timeseries database. One of the critical features of the testbed is its support for progressively
updated data sets (“live” data). Building managers and other users need to be able to upload recent
data for existing building points as well as upload historical data for newly annotated building
points.

Brick model storage. Another key aspect of the architecture is the storage of Brick models
over time, and the integration of the Brick model with the timeseries database. Mortar needs to
store a Brick model for each building and maintain the history of those models as they are changed
and updated. Brick models contain entities called Points which represent measurable quantities
in a building such as sensors, setpoints, alarms and equipment statuses. Points are sampled and
stored in a timeseries database under some unique identifier; the timeseries database uses 36-byte
UUIDs. These identifiers are stored in the Brick model as string literals and are associated with
Points via the brickframe:uuid property. In this way, Brick model decouples the context and
name of a point from its timeseries representation, which opens the possibility for the testbed to
change the timeseries representation without affecting how applications are run. This is helpful
for maintaining continuity of data collection through repairs and retrofits, processing data (e.g.,
for re-uploading data with an adjusted calibration parameter), and in cases of fixing errors (e.g.,
if the wrong data was uploaded for a building point). Because the qualification and execution of
applications makes heavy use of Brick queries, it is important that the storage medium for the Brick
model provides low-latency query response times despite a large number of concurrent requests
against a large number of buildings.

Query processor. Applications interact with the Mortar platform via the query processor’s API,
which provides three methods.

(1) GetAPIKey(username, password) returns a temporary token that can be used by applica-
tions to authenticate to the Mortar API under a user’s account.

(2) Qualify(list of Brick queries) returns a list of Mortar sites that return results for each
of the provided queries. This simplifies the process of identifying for which sites a Mortar
application can run, and will be increasingly helpful as the size of the Mortar dataset grows.

(3) Fetch(dataset description) takes as an argument a declarative specification of the
metadata and timeseries data required by an application and streams the resulting dataset
to the user, where it can be constructed into a representation of the client’s choice. The
streaming mechanism and its interaction with clients is discussed in §4.

Application Execution Environment. Mortar applications are designed to run on compute
resources external to the Mortar backend cluster. Applications are built on libraries such as Py-
Mortar? which leverage Mortar’s API to retrieve the data they need to execute. PyMortar can be
installed through the PyPi® Python package repository or used as part of a virtualized workspace
we have released as a Docker image.

Zhttps://mortardata.org/docs/pymortar/
Shttps://pypi.org/project/pymortar/
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Fig. 1. Mortar architecture

The PyMortar Docker image contains a recent copy of the Mortar analytics library, an up-to-
date version of the PyMortar library, and a Jupyter Notebook browser interface for programmatic
interactions with the Mortar platform. Virtualizing the Mortar workspace in this matter facilitates
deployment across platforms of varying capabilities: a building analyst can begin an experiment on
their laptop with a small amount of data and then execute a larger version of the experiment on a
capable server or cloud instance without spending significant time reconfiguring the programming
and execution environment.

4 IMPLEMENTATION

The Mortar platform is live and available for use*. Our experiences with the live platform and
workload have substantially influenced the design of the Mortar query processor since the initial
release of Mortar in 2018 [15]. Here, we describe how the current implementation of Mortar
addresses the following challenges:

e Demand for Large Datasets: data-driven applications such as regression-based energy
baselining and thermal modeling can require years of high granularity historical data. Mortar’s
growing list of buildings and inclusion of live data mean that the amount of data these
applications will require will only increase. Therefore, we have designed the Mortar backend
to handle dataset requests of arbitrary size.

e Growing User Base: Mortar’s growing user base means that the backend implementation
needs to account for potentially high number of concurrent, long-running queries.

e Complex Application Logic: prior releases of the Mortar platform only allowed users to
define a single matrix of timeseries data with each request. This placed an undue burden on
users to manage timeseries identifiers and contextual metadata between multiple requests
for complex applications such as Virtual Coil Meter and Chilled Water Loop Total Electrical
Consumption, which involve relationships between many different building assets. To simplify

*https://mortardata.org/
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client-side logic, we have designed a new, expressive API for Mortar enabling users to retrieve
multiple collections of metadata and timeseries data in the same request.

4.1 Declarative Dataset Description

The Mortar API Fetch method takes as an argument a declarative description of a dataset consisting
of one or more tables of metadata called Views and any number of tables of timeseries data called
DataFrames and returns that dataset.

A View definition consists of a name (unique to all other Views in the query), a Brick query and
a list of sites. Resolving a View returns a named table whose contents are the results of executing
the Brick query against the Brick model for each of the listed sites. The table’s columns are derived
from the variables in the SELECT clause of the definition, with the addition of columns relating
timeseries identifiers to variables (see Figure 3).

A DataFrame definition consists of a name (unique to all other DataFrames in the query), a list
of timeseries and an optional aggregation parameter with a bucket size. Resolving a DataFrame
returns a table whose columns are timeseries identifiers and whose rows are the value of each
timeseries at some UTC timestamp. Mortar supports several associative aggregation functions (min,
mean, max and count), but can also return the “raw” timeseries data from the database without any
aggregation applied.

Each column of a DataFrame is a timeseries, labeled with its timeseries identifier (UUID). The
set of timeseries in a particular DataFrame is given by a list of View columns whose values are
Brick Points.

Consider the example Fetch request in Figure 2 for a Rogue Zone Detection application. The
request defines one View that relates airflow sensors and setpoints to the equipment they are a
part of — likely a Variable Air Volume Box. The application analysis deals with setpoint and sensor
aggregates differently — max for setpoints and mean for sensors — and defines each collection in
its own DataFrame. The ?sensor and ?setpoint variables in the definition of the View named
airflow_points correspond to collections of Points that have timeseries data associated with
them. The Mortar query processor expands these variables into the corresponding sets of UUID
timeseries identifiers (using the brickframe:uuid property) when evaluating each DataFrame.

4.2 Backend Services

The Mortar backend consists of a family of services all managed by Kubernetes®, a container
orchestration framework. Kubernetes simplifies several tasks:

e scaling the concurrency of the query processor by increasing the number of replicas (parallel,
load-balanced copies of the query processor)

e scaling the amount of storage for Brick models and timeseries data by adding servers

e deploying new versions of the Mortar backend with minimal disruption to existing traffic

e continuous monitoring and crash recovery of backend processes

Timeseries database. The testbed uses the BTrDB timeseries database [4], which provides fast
storage and retrieval of scalar-valued timeseries data. BTrDB supports adding storage capacity
incrementally using the Ceph storage engine, allowing the testbed to scale gracefully as the number
of buildings and amount of data in the testbed increases. BTrDB supports querying data at arbitrary
resolutions, grouping data using associative statistical aggregates min, mean, max and count, as
well as querying the raw data itself. This reduces the processing that must be done by the query
frontend.

Shttps://kubernetes.io/
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import pymortar

client = pymortar.Client()

# sites=[ <some list of sites here> ]
views=[
pymortar.View(

1

2

3

4

5 request = pymortar.FetchRequest(
6

7

8

9 name="airflow_points",

10 definition="""SELECT ?sensor ?setpoint ?equip WHERE {
11 ?sensor rdf:type/rdfs:subClassOf* brick:Air_Flow_Sensor .
12 ?setpoint rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint .
13 ?sensor bf:isPointOf ?equip .
14 ?setpoint bf:isPointOf ?equip
15 ¥

16 e

17 )

18 1,

19 dataFrames=[

20 pymortar.DataFrame(

21 name="sensors",

22 aggregation=pymortar.MEAN,

23 window="30m",

24 timeseries=[

25 pymortar.Timeseries(

26 view="airflow_points",

27 dataVars=["?sensor"],

28 )

29 ]

30 ),

31 pymortar.DataFrame(

32 name="setpoints",

33 aggregation=pymortar.MAX,

34 window="30m",

35 timeseries=[

36 pymortar.Timeseries(

37 view="airflow_points",

38 dataVars=["?setpoint"],
39 )

40 ]

41 ),

42 1,

43 time=pymortar.TimeParams(

44 start="2018-01-01T700:00:00Z",

45 end="2019-01-01T00:00: 007",

46 )

47 )

48 response = client.fetch(request)
49 # => <pymortar.result.Result: views:1 dataframes:2 timeseries:835 vals:14628365>

Fig. 2. Declarative description of the Views and DataFrames required for the “Rogue Zone Airflow” application.

BTrDB presents query results as a stream of timeseries data that must be consumed by a client.
This reduces the amount of memory required for each executing query and helps BTrDB support
many concurrent queries.

Brick model database. existing open-source RDF/SPARQL databases do not perform well
under a Brick model workload, often taking seconds or even minutes to execute a single query
on a moderately-sized Brick model [14]. Mortar stores all Brick models in HodDB [14], a Brick-
specialized RDF/SPARQL database and query processor that demonstrates good performance on
the testbed workload.
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4.3 Query Processor

In order for the Mortar platform to handle the current and projected scale of requests, we have
designed the Mortar query processor around a SEDA architecture. The SEDA architecture is
characterized by distinct process stages connected by explicit queues [38]. Each SEDA stage has a
number of parallel workers who take jobs from the stage’s incoming queue, do some processing,
and insert the job into the stage’s outgoing queue. When a stage is overwhelmed - such as due to
a lack of compute or memory resources — its incoming queue fills up. This means that the prior
stage’s workers will be unable to place their finished jobs in the incoming queue for the next stage,
which influences the prior stage’s incoming queue, and so on (this is called backpressure). A stage
can react to backpressure in a few ways: it can add more workers to its stage to handle more
requests at a time, or it may choose to do nothing or even reduce the number of workers, which can
propagate backwards through each stage and reduce the load on the whole system. If the system is
unable to cope with the incoming request load by adjusting internal resources, it can rate limit
client requests.

After a prior version of the Mortar query processor crashed several times due to large data
requests and high volumes of concurrent requests, we decided to adopt the SEDA architecture as a
method of better managing server-side resources that could gracefully adapt to a varied, bursty
workload. The query processor consists of three stages: frontend, metadata and timeseries.

Frontend Stage. The frontend stage receives requests from clients in the form of calls to Mortar’s
GRPC API, prepares requests for execution, and delivers results back to the client using GRPC. The
frontend authenticates each incoming request using the JWT (JSON Web Token) included in the
request; clients can generate valid JWTs using the GetAPIKey API call. After authentication, the
frontend stage checks that the request is valid and well-formed. The frontend stage then wraps
the client’s request in a Context object which encapsulates all resources allocated during query
execution before attempting to place the request in the metadata stage’s incoming queue.

Requests to Mortar’s GetAPIKey API call are answered from the frontend stage alone. Requests
to Mortar’s Qualify API call flow through the frontend and metadata stages. Requests to Mortar’s
Fetch API call flow through all three stages. Rather than passing the full Fetch response between
stages, the metadata and timeseries stages forward incremental parts of the response that can be
reassembled by the client into the full dataset.

Metadata Stage. The metadata stage evaluates Views from incoming client requests by executing
their Brick query definitions against a HodDB instance containing the Brick models for all sites in the
Mortar testbed. View definitions do not include the binding between points and timeseries identifiers;
instead, the metadata stage rewrites View definitions to query for the timeseries identifiers for
points that are actually used in a DataFrame. For example, the View definition in Figure 2 would
be rewritten to the query in Figure 3. This simplifies dataset definitions by making transparent
the binding between an entity in the Brick model and its corresponding timeseries. To support
this query rewriting functionality, we implemented an alternative query frontend to HodDB that
accepts parameterized versions of SPARQL queries.

Timeseries Stage. The timeseries stage pulls data from BTrDB for each of the timeseries
identifiers derived from the evaluation of the metadata stage’s Views. The TimeParams field in the
client request defines the temporal extent of the data to be retrieved, and the DataFrame definitions
indicate which aggregation function to apply to each stream along with the desired resolution (see
lines 43-45 of Figure 2).

Because a client can request tens or hundreds of megabytes of data, the timeseries stage takes
care to minimize the performance impact of large queries or slow clients on the rest of the platform.
To achieve this, the timeseries stage decomposes the requested timeseries data into small batches
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1 SELECT ?sensor ?setpoint ?equip ?sensor_uuid ?setpoint_uuid WHERE {

2 ?sensor rdf: type/rdfs:subClassOf* brick:Air_Flow_Sensor .

3 ?setpoint rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint .
4 ?sensor bf:isPointOf ?equip .

5 ?setpoint bf:isPointOf ?equip .

6 ?sensor bf:uuid ?sensor_uuid . # AUTOGENERATED

7 ?setpoint bf:uuid ?setpoint_uuid .  # AUTOGENERATED

8 3}

Fig. 3. The metadata stage rewrites the View definition in Figure 2 to this query by inspecting the SELECT
variables used in the request’s DataFrame definitions. Here, those variables were ?sensor and ?setpoint.

that are buffered in memory and enqueued for delivery to the client. The amount of buffered
timeseries data is constant for all queries, so the amount of server memory dedicated to serving a
request is independent of the size of the requested dataset. The timeseries stage only pulls data
from BTrDB as needed, so if a client is slow to read incoming data or terminates the connection,
the ongoing query to BTrDB can be terminated and the resources released without having read
data unnecessarily.

Evaluate app requirements against
all available sites

R Instantiate copy of app for every
BTrDB qualified site
Cluster Fetch data for each site using
resolved Brick queries
After executing the independent
@ components of the app for each
@ site, deliver results
fetch }—,—'| clean }—’ analyze @
/‘/ /y
s

S —
HodDB

fetch clean }—‘ analyze aggregate
e ) ) :
AN - - -
Stuck 1 'y“"’ . .
Damper qualify
App | fetch }—-| clean }—‘ analyze

Fig. 4. Architecture of a portable analytics application. An application consists of five segments: qualify
which filters the building corpus into the execution set, fetch, clean and analyze which are all executed once
for each building in the execution set, and aggregate which is executed once over all outputs of analyze.

5 ANATOMY OF PORTABLE APPLICATIONS

Portability measures how easily a program can be moved from one computing environment to
another. In the context of building analytics, portability refers to how well a piece of code generalizes
to multiple heterogeneous buildings. Many available implementations of building analytics are
not portable due to hardcoded point names, assumptions about the structure of a building and its
subsystems, assumptions about the availability of data, and tightly-coupled phases of operation.
These limitations are an inevitable consequence of how few real buildings are available for the
development or evaluation of analytics applications, which makes it difficult to perform a robust
evaluation.

In this section we describe the general structure of a portable building analytics application
designed to be executed against potentially hundreds of buildings with very little configuration.
We decompose all Mortar applications into five components: qualify, fetch, clean, analyze, and
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1 queries:

2 required:

3 - >

4 SELECT ?vav ?sen ?sp WHERE {

5 ?sp rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint .
6 ?sen rdf:type/rdfs:subClassOf* brick:Air_Flow_Sensor .
7 ?equip rdf:type/rdfs:subClassOfx brick:Terminal_Unit .
8 ?sp bf:isPointOf ?equip .

9 ?sen bf:isPointOf ?equip .

10 ?equip bf:feeds+ ?zone .

11 ?zone rdf:type brick:HVAC_Zone .
12 B

Fig. 5. YAML app specification for qualifying sites for “Rogue Zone (Airflow)” application

aggregate (see Figure 4). These are executed in order by the platform when the application is
invoked.

5.1 Application Requirements

The qualify component defines the metadata and data requirements of an application. Mor-
tar evaluates these requirements against all available buildings in order to determine the subset of
buildings against which the application can run (the execution set). The ratio between the execution
set and the total number of buildings in the testbed provides a good measure of the portability
of an application, and can be used iteratively, to allow an application to cover more buildings.
Mortar forks an instance of the application for each site in the execution set. Specifically, the
qualify component checks

(1) constraints on building typology and other properties, such as the number of floors in a
building, floor area, climate, and occupancy class

(2) data context constraints, such as the kinds of equipment in the building and available rela-
tionships

(3) data availability constraints, including the amount of historical data and available data
resolution

The first two constraints are defined using Brick queries. When qualifying an application,
Mortar evaluates these queries against the Brick model for each site in the testbed; sites are placed
in the execution set if the Brick queries return results. An application can use a set of Brick queries to
implement a “decision tree” where the application customizes its execution based on the information
available in the Brick model, such as to distinguish between RTU-based and AHU-based HVAC
systems. Mortar evaluates data availability constraints against the data streams identified by the
Brick queries.

An example qualify specification for the “Rogue Zone Detection
Figure 5. The Brick query looks for terminal units that expose air flow setpoints and sensors and
relates the terminal unit to the HVAC zone it conditions. Brick’s subclass relationships allow the
same query to be used to find systems with a single air flow setpoint and those with a high/low
setpoint dead-band. In these cases where there is variability in the type of system or what data is
exposed, it is up to the application developer how to deal with the difference: the developer can
write more precise Brick queries to simplify the application code to only deal with a single type of
system, or the developer can account for the potential differences thereby covering more buildings.

6” application is shown in

®This application is described in more details in Section 7.1.
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1 def run(site):
2 print 'running', site

3 data = {3}

4 request = pymortar.FetchRequest(

5 sites=[site],

6 views=[

7 pymortar.View(

8 name="airflow_points",

9 definition="""SELECT ?sensor ?setpoint ?equip WHERE {

10 ?sensor rdf:type/rdfs:subClassOf* brick:Air_Flow_Sensor .
11 ?setpoint rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint .
12 ?sensor bf:isPointOf ?equip .
13 ?setpoint bf:isPointOf ?equip
14 B

15 )

16 1,

17 dataFrames=[

18 pymortar.DataFrame(

19 name="sensors",

20 aggregation=pymortar.MEAN,

21 window="10m",

22 timeseries=[

23 pymortar.Timeseries(

24 view="airflow_points",

25 dataVars=["?sensor"],

26 )

27 ]

28 ),

29 pymortar.DataFrame(

30 name="setpoints",

31 aggregation=pymortar.MAX,

32 window="10m",

33 timeseries=[

34 pymortar.Timeseries(

35 view="airflow_points",

36 dataVvars=["?setpoint"],
37 )

38 ]

39 ),

40 1,

41 time=pymortar.TimeParams(

42 start="2018-01-01T00:00:00Z",

43 end="2019-01-01T00:00: 007",

44 )

45 )

46 resp = client.fetch(request)
47 obj['obj'] = resp
48 yield obj_store.put(obj)

Fig. 6. Python fetch step for “Rogue Zone (Airflow)” application

5.2 Data Retrieval

Mortar runs the fetch component for each site in the execution set. The fetch component
performs the actual retrieval of data from the timeseries database corresponding to the set of
streams identified by the Brick queries. The data retrieval request uses the following parameters:

(1) “variable” definitions: these map a name to a Brick query defining the context for a point
and the desired engineering units for that point (if known), and aggregation function
(min,max,mean,count, or raw).

(2) temporal parameters: defines the bounds on the data, desired resolution, and if we want
aligned timestamps.
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1 def run(objid):

2 data = obj_store.get(objid)

3 data['cleaned_sensors'] = datal'sensors'].dropna() # drop null values

4 datal'cleaned_setpoints'] = datal['setpoints'].dropna() # drop null values
5 return obj_store.put(data)

Fig. 7. Simple Python clean step to drop null values (periods of missing data)

The output of the fetch component is an object providing access to the results of the Brick queries,
the resulting timeseries dataframes, and convenience methods for relating specific dataframes based
on the Brick context (for example, the setpoint timeseries related to a given sensor timeseries).

Figure 6 has an example of the fetch component for the “Rogue Zone Detection” application. The
query requests 1 year of data on air flow sensors and setpoints aggregated by mean in 10-minute
buckets.

1 def run(objid):

2 data = obj_store.get(objid)

3 resp = deserialize(datal['obj'])

4 # get all the equipment we will run the analysis for. Equipment relates sensors and setpoints
5 equipment = [r[0] for r in resp.query("select distinct equip from airflow_points")]

6 # loop through data columns

7

8

9

for idx, equip in enumerate(equipment):
# for each equipment, pull the UUID for the sensor and setpoint

wn

10 q=

11 SELECT sensor_uuid, sp_uuid, airflow_sps.equip, airflow_sps.site
12 FROM airflow_sensors

13 LEFT JOIN airflow_sps

14 ON airflow_sps.equip = airflow_sensors.equip

15 WHERE airflow_sensors.equip = "{0}";

16 """ format(equip)

17 res = resp.query(q)

18 if len(res) ==

19 continue

20

21 sensor_col = res[0][0]

22 setpoint_col = res[0][1]

23

24 # create the dataframe for this pair of sensor and setpoint

25 df = pd.DataFrame([sensor_df[sensor_col], setpoint_df[setpoint_col]]).T
26 df.columns = ['airflow', 'setpoint']

27 bad = (df.airflow + 10) < df.setpoint # by 10 cfm

28 if len(df[bad]) == 0: continue

29 # use this to group up ranges where the sensor reads below the setpoint
30 df['below_setpoint_group'] = bad.astype(int).diff().ne(@).cumsum()
31

32 groups = df[bad].groupby('below_setpoint_group")

33 for group in groups:

34 print 'VAV {0} had high airflow from {1} to {2}’

35 .format(eqiupment, grp[0], grp[-1]

Fig. 8. Python analyze step to find periods when the measured airflow is lower than the setpoint in the
Rogue Zone Airflow application

5.3 Data Cleaning

The clean component is executed on the output of the fetch component. The purpose of this
component is to normalize the timeseries data for the analyze component, which is executed next.
Common operations in the clean component are hole filling, specialized aggregation, and data
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Temperature Sensor 7380 || Luminance Sensor 257
Occupancy Sensor 445 Pressure Sensor 148
Outside Air Temp. Sensor 362 Cloud Cover 32
Setpoints (generic) 2331 Power Meters 77
VAVs 4724 AHUs 467
HVAC Zones 4887 Dampers 1662
Non BMS Thermostats 123

Table 2. Count of streams and equipment available in the testbed data set, aggregated by type. AHU and
VAV totals include related equipment such as fans and pumps.

filtering. It is kept modular to facilitate the re-use of standard cleaning steps. Application developers
can build their own cleaning components or leverage existing methods. A simple example of a
clean component that drops missing data is presented in Figure 7.

5.4 Application Execution

The analyze component contains the actual application logic and is also executed for each site in
the execution set. It can optionally output a result that is delivered to the final component. Figure 8
contains the logic of the “Rogue Zone Detection” application. It finds contiguous segments of time
during which the measured airflow is lower than the airflow setpoint.

The aggregate component is an optional component that is executed once for an application,
and takes as an argument the output of the analyze component from all sites. This is where an
application can perform any final aggregation or analysis across sites.

6 THE MORTAR DATASET

As of writing, Mortar contains 9.1 billion data points of timeseries data for 90 buildings, constituting
more than 750 million hours of data. The majority of data streams in Mortar are at a 15-minute
interval, though some are more fine-grained (up to 1-second).

Figure 9 describes the distribution of the number of streams per building. Each building is
accompanied by a Brick model that describes the building, its equipment and subsystems, available
points, and references to timeseries data streams. The Brick models in the Mortar data set range
in size from 2,117 to 8,763 nodes. Table 2 enumerates some of the types of available points and
equipment in the testbed.

Depending on what data is available, Brick models are generated from Building Information
Modeling (BIM) models of buildings, architectural diagrams, site visits, and interviews. The frame-
work for generating Brick models is open-source’, and aims to integrate with a more mature Brick
model generation framework such as Scrabble [20].

The majority of the dataset is made up of large commercial buildings belonging to a university
campus. The buildings are typically used as offices, classrooms, research facilities and health care
clinics. The average building has a floor area of 70,000 sqft, 3 floors and more than 100 rooms,
while the largest building is a large library with a floor area above 400,000 sqft. Most buildings
are conditioned using large built-up HVAC systems with air handlers and local distribution boxes,
controlled by building automation systems. Chilled water and hot water are produced by a central
plant and distributed through large pipes to most buildings. Some additional chillers are installed
in some buildings to complement the central system.

"https://github.com/gtfierro/BrickMason
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Fig. 9. Histogram of number of data streams for all sites (u =241).

Other buildings in the data set come from a set of independent data collecting efforts. Most of
the non-campus buildings are part of an ongoing project to develop a building operating system;
these are mostly small commercial buildings ranging from movie theatres to fire stations to animal
shelters. Data collected includes thermostats, building meters, occupancy, temperature, illumination
and humidity sensors, electric vehicle charging stations and solar panels.

An important concern is the anonymization of the data in the testbed. Mortar anonymizes the
names and locations of buildings (using nearby NOAA weather stations to indicate general location)
and the names of entities in the Brick metadata model. Future releases of Mortar will support
the selective deanonymization of this metadata to authorized users. Mortar does not currently
anonymize the timeseries data values; because Mortar supports continuous data collection, it is
difficult to apply existing best-practices such as differential privacy.

7 EVALUATION

The key contribution of this paper is a testbed for the robust implementation and evaluation
of portable building analytics applications. In order to evaluate the efficacy of Mortar, we have
implemented a family of 11 applications. We chose these applications to exercise the ability to pull
data from buildings using queries against a Brick model, and also to make use of the proposed
architecture for portable applications. To test the former, we implement applications that require
the use of Brick relationships to properly describe the data needed to run the application. To test
the latter, we implement all applications using the decomposed architecture proposed in Section 5;
some of the applications involve similar or identical logic and can re-use each other’s components,
using Brick queries to adjust the source data.

7.1 Applications

In this section we provide a brief description of the applications that were used to evaluate Mortar.
All applications are implemented in the Python programming language, which allows application
developers to make use of the mature set of data science and statistics libraries available. A summary
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Category Application Brick LOC | App LOC | # sites | % coverage
Measurement Baseline Calculation 3 120 33 37%
. . * | EUI Calculation 10 100 7 8%

Verification & . .

Baselining HVAC Energy DlsaggregaFlon 14 124 14 16%
Thermal Model Identification 17 339 17 19%
Rogue Zone Temperature 15 104 56 62%

Fault Rogue Zone Airflow 7 98 3 3%

Detection & Baseline Deviation 3 204 14 16%

Diagnosis Stuck Damper Detection 8 91 30 33%
Obscured/Broken Lighting De- 11 100 2 2%
tection

Advanced Virtual Coil Meter 14 150 60 67%

Sensing Chilled Water Loop Total Elec- 17 160 15 17%
trical Consumption

Table 3. Applications: Brick LOC and App LOC indicate the lines of code needed to define the Brick queries
and application logic, respectively. “% coverage” is what proportion of the testbed’s buildings qualified for
that application; the corresponding number of buildings is in the “# sites” column.

of the implementations of these applications is provided in Table 3. The portable implementations
of these applications is released in tandem with the data set, forming the beginning of an open
library of analytics applications.

1. Baseline Calculation: this application ports an existing open-source package (LBNL-baseline?),
which implements a baseline calculation algorithm [25], to Mortar. The package requires access
to electric load data as well as outside temperature data when available, which is retrieved using
a simple Brick query. Porting this application to Mortar allows us to easily compare a predicted
baseline with historical data across a variety of sites with differing climates, construction, and
usage patterns. Some results of this application are in Figure 12.

2. Baseline Deviation: we made use of the modular implementation of the Baseline Calculation
application to implement this application. In particular, we modified the analyze component from
the Baseline Calculation application (keeping the rest of the stages) to compare measured energy
consumption with the predicted baseline to identify periods of abnormally high consumption.

3. Energy Usage Intensity (EUI) Calculation: the calculation of EUI involves dividing the
yearly energy consumption of a building in kilowatt-hours by the total floor area of that building.
This metric is often used to benchmark buildings. Our implementation of EUI uses a Brick query to
discover what kind of building energy consumption data is available. In the current data set, sites
report consumption either through an instantaneous demand meter such as a Rainforest Eagle®
or through an energy bill such as PG&E’s “Share My Data” service. Availability of meter data can
be determined through a Brick query, and the list of sites with building meters can be retrieved
using the Mortar Qualify API method. The floor area of a building can also be captured in the
Brick model using the extensions from Table 1. The logic of the application retrieves a year of data,
performs the appropriate calculation (either a conversion from instantaneous power data to kWh
or a simple sum of regular kWh readings) and divides it by the total floor area as retrieved from the
Brick model.

8https://github.com/LBNL-ETA/loadshape
“https://rainforestautomation.com/rfa-z114-eagle-200/
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Fig. 10. Distribution of EUI across the Mortar portfolio

4. HVAC Energy Disaggregation: this application estimates the energy consumption of equip-
ment by correlating changes in electrical demand (through the use of a building-level meter or
submeter) with changes in HVAC equipment state. In the case of binary state points (e.g. Compressor
On Off Status), the disaggregation application can estimate the total energy usage of a piece
of equipment. The disaggregation application could then make use of any available weather and
internal temperature data in order to identify any change in efficiency in the equipment’s operation
corresponding to changes of environmental variables. Our implementation leverages the Brick class
hierarchy to find all points of type Status that relate to equipment in the building; the resulting
queries can easily be refined to look only at specific classes or instances of equipment such as only
single-stage or multi-stage equipment.

5. Thermal Model Identification: this application trains a zone-level thermal model using zone-
and room-level (using additional sensors, if present) temperature sensing, outside air temperature,
cloud coverage, HVAC equipment state data and, when available, adjacency information. The
implementation uses Brick queries to determine what information is available such as the number
of zones, the temperature sensing in those zones, HVAC equipment conditioning those zones, and
available weather data.

6. Rogue/Critical Zone Temperature: this application detects rogue zones, which are thermal
zones whose temperature consistently measures outside of the setpoint temperature band; this
can be caused by thermal loads larger than design conditions, incorrect setpoints and/or broken
sensors or equipment [9]. For critical zones, it indicates that the air temperature leaving the AHU
should be lower/higher. In large HVAC systems these zones can cause an increase in the energy
use of the entire air handling units, due to increased reheat in the other zones. The detection of
rogue zones can also be used to improve control sequences.

7. Rogue/Critical Zone Airflow: this application detects rogue zones whose airflow is con-
sistently below the airflow setpoint. It uses Brick models to pull in additional context about the
building. The airflow setpoints and sensors can be related through the HVAC infrastructure to the
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Fig. 11. Comparing the mean squared error of building energy consumption prediction using the baseline
from [25] trained and evaluated on summer months (+) versus winter months (e).

zones containing the rooms affected by the reduced airflow. This information is typically used as
an input to the duct static pressure controller on the air handling unit serving these zones.

8. Stuck Damper Detection: this application performs the common fault-detection task of
identifying dampers whose position has not changed in weeks or months. Our implementation
automates the task of finding the damper position status streams and identifies the HVAC zones
and rooms affected by the damper. For zones with discharge airflow sensors the application can
also test if the damper appears to work correctly, but the amount of air supplied does not change
with its position. This can indicate a faulty sensor or a broken linkage between actuator and the
physical damper.

9. Obscured Lighting Detection: this application groups lighting status points for a lighting
zone with luminance sensors in that zone in order to build a correlation between time, lighting
status, and luminance. Deviations from this model can be used to identify broken or obscured
fixtures and luminaires.

10. Virtual Coil Meter this application estimates the amount of heat energy used by a heating
or cooling coil by performing a calculation over upstream and downstream air temperature sensors,
air flow sensors, and the position of the valve in the coil [33]. The portable implementation of
this application discovers these points through querying the Brick model for a building for their
relationships to each other and the building’s HVAC system.

11. Chilled Water Loop Total Electrical Consumption: this application examines all equip-
ment on a chilled water loop and sums the electrical consumption of any component found on that
loop. Assembling this collection of equipment and related building points without a Brick model
involves a high degree of manual effort that does not carry over when porting the application to
other buildings.
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Fig. 12. Baseline prediction app: Predicted baseline using [25] plotted against actual building energy
consumption.

7.2 Results & Discussion

The open building testbed presents an opportunity to compare multiple buildings in a portfolio,
measure the portability of an application, measure the accuracy or performance of an application,
compare the performance of similar applications, and automate tedious re-configuration when
porting an application to different buildings. To demonstrate these features, we examine the results
of running a few applications from Table 3 against the Mortar testbed.

First, we examine the accuracy of the building energy estimation baseline algorithm from [25]
across winter and summer seasons (Figure 11). In winter, the mean squared error of the baseline
prediction compared to a week’s ground truth increases with the floor area of the building. The
positive correlation between square footage of the building and the error in energy prediction
suggests that larger buildings have more variability in their loads than the baseline estimation
algorithm is able to account for. The higher error in the winter months compared to summer
months additionally suggests a seasonality to this error. A more thorough evaluation of the baseline
estimation algorithm is beyond the scope of this paper, but this initial result demonstrates the value
of being able to evaluate an analytics algorithm over a large corpus of buildings.

The Thermal Model application is a good example of how applications can change their behavior
based on the information available in a building. The qualify step looks for buildings with
thermostats and RTUs with or without room-level temperature sensors. In the case when only
thermostats are available, the application can provide a zone-level thermal model that runs on 17
buildings from the testbed. For buildings where room-level temperature sensors are available, the
application takes those into account to provide a more fine-grained room-level thermal model, but
this only runs on 3 buildings from the testbed. If the application were to be extended with a thermal
modeling approach for AHU-based systems with heating and cooling coils, then the thermal model
application would operate over all 90 buildings.

The Mortar testbed also presents the opportunity to examine building performance across a
portfolio. In Figure 10, we plot the distribution of EUI over the whole testbed portfolio; users could

, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:20 G. Fierro et al.

type site

point
ART.AHU.AHUO1.CCV Cooling_Valve_Command  art
ART.AHU.AHUO03.0utside_Air_Temp_Virtual Outside_Air_Temperature_Sensor  art
ART.CHW.Pump1_Start/Stop Pump_Start_Stop_Command  art

ART.AHU.AHUO3.Chilled_Water_Return_Temp Chilled_Water_Return_Temperature_Sensor  art

ART.AHU.AHUO2.CCV Cooling_Valve_Command  art
ART.AHU.AHUO02.Cooling_Valve_Output Cooling_Valve_Command  art
ART.AHU.AHUO3.CCV Cooling_Valve_Command  art
ART.AHU.AHUO03.Supply_Air_Pressure Supply_Air_Static_Pressure_Sensor  art
ART.AHU.AHUO02.0utside_Air_Temp_Virtual Outside_Air_Temperature_Sensor  art
ART.AHU.AHUO02.Supply_Air_Pressure Supply_Air_Static_Pressure_Sensor  art
ART.AHU.AHUO1.Heating_Valve_Output Heating_Valve_Command  art
ART.AHU.AHUO03.Heating_Valve_Output Heating_Valve_Command  art

ART.AHU.AHUO1.Chilled_Water_Return_Temp Chilled_Water_Return_Temperature_Sensor  art

ART.AHU.AHUO01.Cooling_Valve_Output Cooling_Valve_Command  art
ART.AHU.AHUO03.Cooling_Valve_Output Cooling_Valve_Command  art
ART.AHU.AHUO02.Heating_Valve_Output Heating_Valve_Command  art

ART.AHU.AHUO2.Chilled_Water_Return_Temp Chilled_Water_Return_Temperature_Sensor  art
ART.AHU.AHUO1.Outside_Air_Temp_Virtual Outside_Air_Temperature_Sensor  art

ART.AHU.AHUO1.Supply_Air_Pressure Supply_Air_Static_Pressure_Sensor  art

Fig. 13. List of Points and their types in the Brick schema for a particular site in the Mortar dataset

adjust the Energy Use Intensity application qualify step to filter by different building properties,
such as climate and square footage. The inclusion of building properties in the Brick model for
each building facilitates this flexible portfolio management.

Mortar also lets users skip tedious configuration steps. Without the use of a Brick model, as-
sembling the points for the Chilled Water Loop Total Electrical Consumption application requires
site-specific knowledge as to what power meters are present in the building, what equipment they
measure, and whether or not that piece of equipment is related to a particular chilled water loop.
Performing this assemblage over a large building portfolio can be unmanageable.

8 APPLICATION DEVELOPMENT CASE STUDIES

To qualify the experience of using the Mortar platform, we asked several researchers to implement
and describe several building-related analytics applications.

8.1 Application: Available Brick Points

Data discovery is an important facet of the Mortar platform. While users who are familiar with
Brick can execute queries to determine which data sources are available for a particular building, it
can be helpful to newer users to see a list of all available data sources.

This application queries a site’s Brick model for the names of all instances of the Point class,
which correspond to the available data sources. The returned list of data sources - organized by
type — allows users to see what types of timeseries data exist for a particular site.

The application can fetch all the points and corresponding types for a specific site or for all sites
in the Mortar dataset. This output is saved as a CSV file. Figure 13 contains typical output of this

app.
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Fig. 14. Heating coil and cooling coil valve commands over time for an AHU in a Mortar site demonstrating
simultaneous heating and cooling.

8.2 Application: Simultaneous Heating/Cooling AHUs

Simultaneous heating and cooling is one of the most common kinds of faults in Air Handling Units
(AHUs) [12, 22, 31, 36]). AHUs have a heating coil valve and a cooling coil valve that condition (heat
or cool) the air distributed throughout a building; some models additionally contain valves that
control the volume of outside air to be mixed. The AHU adjusts the degree of heating or cooling by
opening and closing the valves; this is typically measured in percent open (0-100%). Having both
valves open at the same time is a waste of energy (except for dehumidification purposes [22])

This Mortar application performs detection of simultaneous heating and cooling in AHUs using
the rule-based fault diagnosis algorithms from [36] [12]. The application uses a single Brick query
to fetch allBrick:Cooling_Valve_Command and Brick:Heating_Valve_Command points for all
AHUs across the Mortar testbed; these correspond to the control commands (0-100%) sent to the
cooling coil valve and the heating coil valve respectively.

The application uses the Mortar fetch command to retrieve this data, and executes the analysis
to identify AHUs that have periods of time during which both the heating and cooling valve
commands are greater than 0. The application outputs the name of the AHU and all time ranges
containing suspected simultaneous heating and cooling. Figure 14 shows the heating and cooling
valve commands for one AHU in a site in the Mortar dataset during a week in summer of 2017. It
can be seen that the heating coil value is almost always completely open, and the cooling valve is
never closed; therefore, this is an example of simultaneous heating and cooling.

At the time of writing, executing this application returned data for 54 qualified sites. Execution
took less than 50 seconds to analyze data for the 3 month period "2017-01-01 00:00:00" to "2017-04-01
00:00:00" across all qualified sites.

8.3 Application: Energy Consumption Baselines

Building energy consumption baselines are an important component of Measurement and Verifi-
cation, and can help facility managers understand the impact of energy efficiency measures and
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Fig. 15. Energy profile of a site post retrofit.

programs. There are many existing techniques for generating baselines and predicting energy
consumption; however, it has been difficult to compare these techniques across diverse sites due to
lack of access to data and the effort involved in implementing and porting the techniques to each
site.

The Mortar platform enables large scale comparisons of different approaches. We explore one
such approach here, but other baseline algorithms have been implemented over Mortar!'?. The
approach implemented in this application uses regression analysis, which has shown promising
results in predicting energy consumption [16] while being relatively easier to implement.

To compute the energy consumption baseline for a given target date, the application first pulls
all relevant data prior to that date corresponding to the chosen feature set which includes outdoor
air temperature, time of day, day of week and past energy consumption. The application fits the
regression and outputs the model accuracy (adjusted R-squared) for a target date and produces
plots of predicted consumption against true consumption for each site (example: Figure 15). The
target date may be chosen to compare against other baselining methods, or it may be chosen to
estimate the impact of an energy efficient control scheme deployed on that day (for example, to
estimate the amount of energy saved).

Mortar provides a large amount of building data which makes it easy to calculate energy baselines
on a diverse set of buildings, which allows a user to gain substantial insights into which types of
baselining techniques work on which kinds of buildings.

8.4 Application: Building Occupancy and Energy Correlation

Building managers generally schedule a building’s HVAC system to run on a fixed time schedule
(e.g. 9AM-5PM) [17] with the assumption that this period corresponds to operating hours, or at
least when the building is expected to be occupied. However, the actual occupied periods may not
align with this schedule (for example, university buildings are often active from 11AM-9PM) or
there may be an exception to the schedule (such as weekends or federal holidays). These are periods
when the building is unoccupied but the HVAC system is still running. The mismatch between the
programmed occupancy schedule and the actual occupancy of a building is a potential source of
both occupant discomfort and energy wastage[30, 41].

This application calculates the energy consumed by each building when it is occupied. The
application uses two Mortar queries to fetch the occupancy data and energy consumption for
buildings that have both features available. The Qualify API method lets Mortar filter out the
buildings without the required data.

Ohttps://github.com/SoftwareDefinedBuildings/mortar-analytics/tree/master/baselines/energy_consumption_baseline
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Fig. 17. Occupancy of building.

The application produces plots showing the correlation between the energy consumption and the
recorded occupancy for each building. Figures 16 and 17 show the respective plots of a single site.
This data can be used to compute the amount of energy expended when the building is occupied
verses when it is unoccupied.

8.5 Application: Inefficient Zone Detection

This application detects HVAC zones with inefficient control strategies by finding HVAC zones that
were both heated and cooled in the same time interval. Heating and cooling in the same interval
does not necessarily point towards malfunctioning equipment in the zone, but it does suggest that
there are possible changes that can be implemented to improve the operating efficiency.

The application uses a single Fetch method call to retrieve thermostat data — heating/cooling state,
indoor air temperature and heating/cooling setpoints (abbreviated HSP and CSP) - along with the
thermostat’s location and the name of the HVAC zone it is controlling. Only the heating/cooling state
of the thermostat is required for the analysis, but having the setpoints and indoor air temperature
data available helps provide more context to the detected event: for example, to determine if the
inefficiency was due to a change in setpoints or because there was an observed rapid change in
temperature.

In the Mortar platform, each thermostat can be in one of the states listed in Table 4. Because
of this quantization, Mortar can return uninterpretable data for the heating/cooling state if the
mean or median aggregation functions are used. The application uses the max aggregation function,
which preserves the enumerated integer values.
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Value | Thermostat State

0 Off

1 Stage 1 Heating
2 Stage 1 Cooling
3 Fan only

4 Stage 2 Heating
5 Stage 3 Cooling

Table 4. Thermostat state enumeration in the Mortar platform

85 2.00
— - indoor air temperature =~ —— cooling setpoint
—— heating setpoint ---- state 1.75

80
1.50

~
v

1.25

[
1.00
@

0.75

Temperature (F)
~
o

0.50

0.25

)}
v

0 [ o |
o e —— P 1 N N N T N O

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time

0.00

Fig. 18. Thermostat data for 2018-12-17 showing the change in the state, the setpoints and the indoor air
temperature

The application operates by scanning through the retrieved data using a configurable time
interval. It uses the above enumeration of states to decide if in any interval, the thermostat has
been in both heating (1 or 4) and cooling (2 or 5) states. The application outputs the range of each
interval that meets this condition, with additional context: the HVAC zone, room containing the
thermostat, the thermostat setpoints, and the percentage of the time the thermostat was in either
the heating or cooling state.

This approach can be augmented with logic to filter out different faults: for example, zones that
do not meet a minimum threshold of heating or cooling duration, or identifying ranges of time
when two different zones in a building are heating and cooling. Table 5 and Figure 18 show an
example of a zone that has been in both heating and cooling states in the same hour for three
consecutive hours on a day (2018-12-17 20:00:00 to 22:00:00) in winter. Figure 18 shows that the
inefficiency is due to setpoints being changed to induce cooling.

8.6 Application: Baseline Prediction and Demand Response Event Evaluation

Demand Response (DR) event programs encourage customers to shift energy consumption away
from peak hours, usually through increased energy prices. For building managers and utilities, it is
useful to quantify energy and cost savings during a DR event. Calculating these metrics requires a
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time | % heating | % cooling | min HSP | min CSP | max HSP | max CSP
20:00:00 30.00 40.00 60 63 66 69
21:00:00 16.67 16.67 61 64 66 69
22:00:00 1.67 25.00 60 63 64 69

Table 5. A subset of the output from the Inefficient Zone Detection app; time: Hour of day on 2018-12-17
when the Room 102 (zone HVAC_Zone_Rm2) was both heated and cooled; % heating, % cooling: percentage
of the time in the hour it was in heating and cooling states; min HSP, min CSP, max HSP, max CSP: minimum
and maximum values of heating and cooling setpoints in Fahrenheit during that hour
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Fig. 19. Implementation of the DR Event Baseline Prediction and Evaluation

baseline, which can predict energy consumption during the day of the DR event assuming no DR
program is applied. The calculated baseline can be compared with actual energy consumption to
estimate the energy and cost savings during the DR event.

This application takes as input a site name, DR event dates, and a window of time to train the
baseline prediction model on. It outputs the model test error, baseline predictions (in 15-minute
intervals), and estimated energy and dollar savings for each DR event.

The application performs data collection, feature engineering, model selection, and DR event
evaluation (summarized in Figure 19). The data collection stage performs two queries to fetch
15-minute interval data over a configurable window: one to fetch energy from points of type
brick:Building_Electric_Meter and one to fetch outdoor air temperature from points of type
brick:Weather_Temperature_Sensor.

The application extends a baseline calculation algorithm [25] with temperature change over time.
The resulting features are:

o Time-of-week: An indicator variable a; € {0, 1} for the ith 15-minute time interval of the
workweek, i € [0,479]

e Piece-wise temperature: Temperature split into intervals. Given a temperature in degrees
Fahrenheit ¢, let f; = max(min(t — C;, Cj+1 — Cj),0), where C = [0, 40, 50, 60, 70, 80, o], j €
[0, 5] (six features total).
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Fig. 20. The left plot displays the prediction of energy consumption in an office building on a test day. The
right plot displays a DR event which produced desired results when compared to the baseline-an estimated
$10 of savings and 7 kWH reduced energy consumption during the event.

e Temperature Change: Change in temperature from the previous time-step, measured as
te — -1

After feature engineering, the application chooses test days and removes them from the training
set. In order to evaluate model accuracy on DR event days (assuming no program applied), the
application finds days that are “similar” to event days (typically other hot days). First, the application
identifies the mean and max temperature of DR event days and finds the median of these two values.
It then searches its data for all dates with mean and max temperatures above these cutoffs. Finally,
it randomly selects half of these “qualified” dates for testing, and keeps the remaining dates in the
training set to avoid extrapolation. DR event days are also removed from the training set. The app
then fits the training set with an ,-regularized linear regression model, using cross-validation to
pick the regularization term.

The application uses the trained model to predict the baseline energy consumption on the test
dates and the DR event dates. The application first finds the “best” test dates using the RMSE
between the prediction and actual consumption, then compares the predicted energy consumption
for the “best” test day with actual consumption on DR event dates and uses the difference between
them to compute energy and dollar savings.

The application was tested on 10 buildings in California pulled from the Mortar dataset. Standard
errors ranged from 1.34 kW to 5.46 kW, with an average of 3.48kW and a median of 3.27kW. The
distribution of errors and example feature weights are displayed in Figure 21 Examples of baseline
predictions are displayed in Figure 20.

Mortar makes it possible to develop this application for a variety of buildings. It is simple to
define the time-series to query, whether it is comes from a specific kind of data source (Building
Electric Meter) or a class of data sources (Temperature Sensors). It also accommodates a variety of
time-series intervals and aggregations, which makes it intuitive to find test days that were similar
to DR event days by using the MAX and MEAN aggregations over 24-hour time intervals. Access
to the large array of buildings allows the application to evaluate the regression model in a variety
of contexts, and potentially find a more predictive subset of features for each building.

Our experience writing this application suggests that Mortar can improve its handling of missing
data. Higher standard errors came from buildings missing temperature data. Additionally, more
metadata on the weather temperature sensors would be helpful; frequently, the query returned
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multiple weather temperature sensors and it was unclear which sensor was the most accurate or
closest to the building.

Example Weights for Time-of-Week Feature
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Fig. 21. The bottom-left histogram displays the test standard errors for each of the ten buildings. The top and
bottom-right plots display example weights for a baseline model trained for an office building. The model
captures the daily period of demand, as well as the non-linear relationship between temperature and demand
described in [25]. The weight for temperature change was -39.8.

8.7 Application: Data-Driven Black-Box Thermal Modeling

Developing control algorithms to improve the energy efficiency of HVAC systems requires indoor
temperature forecasting models. Most state of the art thermal models rely on grey-box and white-
box models that have a notion of the structure and the layout of a building [2]. Because grey- and
white-box models are site-specific, it is difficult to scale their development to support widespread
predictive HVAC control. This application investigates the efficacy of a data-driven black-box
thermal model that can generalize across multiple buildings. While similar models have been
proposed before [34], to our knowledge they were not tested against an extensive testbed such as
provided by Mortar. Future work is to reproduce existing work on the Mortar testbed.
The application utilizes a second-order regression model:

Thext =Tin + aheatingcheating(Tin - bheating) + acoolingccooling(Tin - bcooling)
+ Cout(Tout = Tin = bout) + Chias(Tin = bpias)
num_zones

+ Z Czonei (Tin - Tzonei - bzone,-)
i

+ Cprevarev
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Fig. 22. Forecasting results for a sample site. The “real” line is the true indoor temperature. “Second order TM”
line are the forecasting results. The “action” line indicates for the left (right) image whether or not heating
(cooling) happened in the given zone.

with:

Thext = the predicted indoor temperature 7 minutes into the future.
T;in = the current indoor temperature in the given HVAC zone
Tour = the current outdoor temperature
Tzone; = the indoor temperature of the other zones in the building

Tprw = the temperature 7 minutes ago.

The application uses Mortar to fetch timeseries data for each of the parameters described in the
thermal model equation. The data collected spans 200 days of training and 50 days of testing data
for each feature, totaling over 60,000 data points at time of writing. Figure 22 contains forecasting
results for the trained thermal model.

The application uses regression models rather than non-linear models because (1) regression
models retain some interpretability over the learned coefficients, (2) linear models are needed for
applying Linear Programming to building control, and (3) more complex models did not demonstrate
better performance across buildings.

One major benefit of Mortar is that developers can quickly and easily explore data from various
buildings. This ability to cross-reference data across buildings motivated and justified the use of a
second order model in this application. Various higher order effects such as temperature decreasing
even though cooling has ended are visible in the sample data in Figure 23. With Mortar, we were
able to easily compare these effects across buildings to confirm that they were universal.

The Brick ontology made it easy to retrieve relevant data streams for developing the thermal
model. For example, historic HVAC zone temperatures and cooling/heating actions are both in a
natural relationship with a thermostat, which is related to the HVAC zone. With this understanding,
we create the query in Figure 24 for HVAC zone temperatures. To then retrieve action data, we
simply replace brick:Temperature_Sensor with brick:Thermostat_Status in the given query.
The application embeds this query in a Mortar Fetch call to retrieve data for a specified time period.
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Fig. 23. Three of the core issues encountered in indoor temperature data.

1 SELECT ?tstat ?temp WHERE {
2 ?tstat rdf:type brick:Thermostat .

3 ?tstat bf:controls/bf:feeds mybuilding:HVAC_Zone_1 .
4 ?tstat bf:hasPoint ?temp .

5 ?temp rdf:type brick:Temperature_Sensor

6 3}

Fig. 24. Brick query to retrieve HVAC zone temperatures.

9 RELATED WORK

Existing building benchmarking data sets (Table 6) are static, sparse, and/or lack sufficient context
to implement potentially complex analytics. Further, there is no standard adopted naming scheme
to tie these data sets together, which hinders the portability of any application developed against
a single platform. In contrast, Mortar provides data sets that are continuously updated, and well
annotated. Further, many of the existing data sets can be easily integrated in Mortar by representing
their metadata using a Brick model and ingesting any included timeseries data. Executing and
automating this process is the subject of future work.

Also related are a family of analytics platforms for building data and the smart grid. Commercial
platforms like Skyspark [35] and BuildingOS [24] offer a mixture of pre-built standard analytics
and composable rules and operators for user-defined analytics. Some of these platforms require
analytics to be implemented in a proprietary or custom programming language, which limits the
types of tools that can be used to develop analytics. There are also several academic building
operating systems that implement building and smart-grid analytics [3, 10, 11, 39].

The proposed portable analytics applications architecture enables users to develop applications
(or port existing ones) using standard, open-source tools and frameworks, and integrate these
applications into the Mortar platform. Further, Mortar allows users to add their own buildings to
the testbed, and will assist them with the creation of the Brick model. Documenting and automating
this process is the subject of future work.
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level meter data

7 Name Year 7 Available Data Updates 7 Metadata
Building Genome 2017 non-residential building electric meter data rare building typology
Project [26]
CBECS [13] 2016 building energy usage, systems and equipment | 4-10 year cycle | building typology
survey
NILMTK [7] 2014 high-frequency building electric meter data, equip- rare labels and electrical
ment state subsystem
Smart* [6] 2012 electrical meter data, temperature and humidity | yearly releases | labels only
sensors, applicance state for residential buildings
REDD [21] 2011 full building and device-level electrical meter data none electrical subsystem
BASE [40] 1995 temperature and humidity sensors, HVAC equip- none building typology,
ment and sensors HVAC system
GREEND [28] 2013 device-level electrical meter none appliance labels
Pecan St Data-| 2011-2018 | building and appliance level electric, gas, and wa- | unspecified | building typology,
port [32] ter data for residential buildings equipment labels
REFIT [29] 2013-2015 | high frequency electric building and appliance none building typology, ap-

pliance labels

Table 6. Some open data sets of building data. “Labels only” means the data set’s metadata only identifies a timeseries with a label and little or no contextual
metadata. “Building typology” means the data set’s metadata only deals with high-level information about the building such as occupancy class, climate and

floor area.
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10  CONCLUSION & FUTURE WORK

In this paper, we have presented the design and implementation of an open testbed for portable
building analytics (Mortar), a diverse corpus of timeseries data and Brick models spanning multiple
building classes (Mortar data set), and an architecture for implementing portable analytics applica-
tions (Mortar portable applications). Mortar utilizes and extends Brick, a graph-based metadata
model, to describe the relationships between data streams and to facilitate application portability.
We have developed 11 applications from the literature to evaluate Mortar. The evaluation shows
that Mortar can run a single application against multiple buildings to a) compare the performance
of multiple buildings in a portfolio (EUI score), b) measure and improve application coverage across
buildings, and c) measure the application performance or accuracy (e.g., mean error). Further, we
have showed that Mortar allows application developers to significantly reduce the manual labor
involved in developing and deploying an application against multiple buildings, or compare the
performance of two algorithms for a given application. Our goal is that Mortar will be used as a
standard benchmarking platform for implementations of new and established analytics algorithms,
leading to a new generation of robust, portable analytics with reproducible evaluations.

There are several areas of future work that will improve the usability and security of Mortar.
Firstly, we are working on integrating privacy-preserving techniques for sharing continuously
updated timeseries data. We are also improving the process for integrating new sources of timeseries
data and metadata into the testbed. Mortar is available at mortardata.org.
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