energies MBPY

Article

Solar+ Optimizer: A Model Predictive Control
Optimization Platform for Grid Responsive Building
Microgrids

Anand Krishnan Prakash @, Kun Zhang L@, Pranav Gupta 1 David Blum 1, Marc Marshall 2,

Gabe Fierro 3, Peter Alstone 2, James Zoellick 2, Richard Brown 0 and Marco Pritoni **

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; akprakash@lbl.gov (A.K.P);
kunzhang@lbl.gov (K.Z.); pranavhgupta@lbl.gov (P.G.); dhblum@lbl.gov (D.B.); rebrown@Ibl.gov (R.B.)

2 Schatz Energy Research Center, Humboldt State University, Arcata, CA 95521, USA;

mwml@humboldt.edu (M.M.); peter.alstone@humboldt.edu (P.A.); james.zoellick@humboldt.edu (J.Z.)

Department of Electrical Engineering and Computer Sciences, University of California Berkeley,

Berkeley, CA 94720, USA; gtfierro@cs.berkeley.edu

*  Correspondence: mpritoni@lbl.gov; Tel.: +1-530-220-4394

1t These authors contributed equally to this work.

check for
Received: 18 May 2020; Accepted: 9 June 2020; Published: 15 June 2020 updates

Abstract: With the falling costs of solar arrays and battery storage and reduced reliability of the grid
due to natural disasters, small-scale local generation and storage resources are beginning to proliferate.
However, very few software options exist for integrated control of building loads, batteries and other
distributed energy resources. The available software solutions on the market can force customers to
adopt one particular ecosystem of products, thus limiting consumer choice, and are often incapable
of operating independently of the grid during blackouts. In this paper, we present the “Solar+
Optimizer” (SPO), a control platform that provides demand flexibility, resiliency and reduced utility
bills, built using open-source software. SPO employs Model Predictive Control (MPC) to produce
real time optimal control strategies for the building loads and the distributed energy resources on
site. SPO is designed to be vendor-agnostic, protocol-independent and resilient to loss of wide-area
network connectivity. The software was evaluated in a real convenience store in northern California
with on-site solar generation, battery storage and control of HVAC and commercial refrigeration
loads. Preliminary tests showed price responsiveness of the building and cost savings of more than
10% in energy costs alone.

Keywords: demand flexibility; control system; optimization; resiliency; smart buildings;
distributed energy resources; model predictive control

1. Introduction

The United States electrical grids face a range of new challenges to safe and reliable operation:
aging infrastructure, increased penetration of less predictable renewable generators to mitigate climate
change and the increasing occurrence of extreme weather events all place stress on the grid [1].
To address these issues, more decentralized grid architectures have been proposed [2] based on
distributed energy resources (DERs) and microgrids [3-5]. Collections of buildings with local DER
and energy storage could operate in grid-disconnected (islanded) mode in case of outages, improving
system resiliency [6,7]. Buildings that participate as DERs could also provide additional opportunities
for energy storage using their thermal systems (Heating, Ventilation and Air Conditioning (HVAC)
and Refrigeration) [8]. With the emergence of low-cost solar and battery storage, small-size microgrids
are now a commercially viable option at sites with a high value for resilience and several products to

Energies 2020, 13, 3093; doi:10.3390/en13123093 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-3694-3225
https://orcid.org/0000-0002-0197-8778
https://orcid.org/0000-0002-4219-7214
https://orcid.org/0000-0003-4200-6905
http://dx.doi.org/10.3390/en13123093
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/12/3093?type=check_update&version=2

Energies 2020, 13, 3093 2 of 27

control them have appeared in the market [9-11]. However, microgrid software typically focuses on
site protection and battery control and does not coordinate with control of building systems, especially
HVAC [12].

HVAC systems represent the largest fraction of the energy use and demand in commercial
buildings [13]. Traditional HVAC control strategies deploy rather simple control algorithms [14]
that might reside in zone-level thermostats (in small and medium commercial buildings) or in a
centralized building automation system (in larger commercial buildings). These algorithms rely on
static schedules, irrespective of the actual occupancy of the building or grid needs. While more modern
HVAC control strategies exist, they do not typically incorporate DER and are largely proprietary in
their implementation, making them hard to extend.

The lack of interoperability between these new control systems limits the realization of the
full potential for microgrid systems [15]. For instance, a microgrid controller that has very little
information about the status of the building and its projected load cannot operate the battery optimally.
Furthermore, there can be missed opportunities for HVAC and refrigeration controllers to take full
advantage of periods of high solar generation to pre-cool or pre-heat, utilizing innate thermal storage
in the mass of buildings and refrigerated goods.

To address this gap, this paper presents a software platform called “Solar+ Optimizer” (SPO),
which was developed, deployed and tested in a pilot application at a fueling station with convenience
store in Blue Lake, California, United States. The software provides optimal control of the building
loads and DERs and has been built exclusively on open-source libraries. The controller takes into
account the time-varying costs of energy and demand and the status of the grid connection to reduce
the overall operational cost for the building owner, and it provides demand-response services to
the grid. The platform is designed to be scalable, as well as vendor and protocol agnostic. This
allows building managers to take advantage of a larger market of connected devices (both sensors and
actuators) without being tied down to any particular manufacturer ecosystem, and it could enable
less costly adaptation and modification of the system over the expected multi-decade lifetime of
microgrid hardware.

The paper is organized as follows. Section 2 reviews the existing literature of advanced control
studies with a focus on experimental and field studies. Section 3 introduces the overall software
architecture and details the principal components within. Section 4 describes the deployment of the
hardware and software on a case study and presents experimental results and analysis. Section 5
discusses the results and technical challenges encountered during the demonstration. The paper ends
with conclusions and future work in Section 6.

2. Literature Review and Contribution

Research on advanced control strategies and algorithms (e.g., MPC and reinforcement learning)
with application to building systems and DERs has grown significantly in the last decade [16], as
the potential of these advanced controls to provide flexibility to the electrical grid has become more
evident. Previous studies have investigated MPC applications in a range of HVAC and thermal
energy storage systems in buildings: These include MPC utilizing an ice storage tank and building
thermal mass [17,18]); MPC for Air Handlers (AHU) and Variable Air Volume (VAV) systems [19-21];
and MPC applied to window operation for mixed natural and mechanical ventilation in an office
building [22,23]. Studies have also demonstrated the coordination of HVAC, energy storage and PV
generation using MPC based controls in simulated commercial buildings [24-27]. However, most of
these studies developed customized solutions, closely tied to the specific building and equipment
setup; the gap that this work fills is an MPC application that is built to be extensible and scalable.

There are several control algorithms that have been used for optimizing building systems and
DER. Linear programming was employed to minimize the conditional value at risk in the objective
function while providing resilience and cost minimization in commercial buildings through local
energy generation and storage [7,28]. Genetic algorithms have also been used to optimize the building
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thermal loads [29,30]. Reduced energy costs and improved occupant thermal comfort within buildings
were achieved by using particle swarm optimization [31,32]. Dynamic programming was employed by
Benjamin Heymann and Jiménez-Estévez [33] to reduce the energy costs while meeting the building
load requirements. A neural network model was trained using the Levenberg—-Marquardt algorithm
to predict the optimal boiler operation period in commercial buildings [34]. Another emerging type
of advanced control is Deep Reinforcement Learning (DRL) [35-40]. While DRL is a model-free
approach, most DRL methods use detailed models to generate synthetic data for training purposes.
EnergyPlus models of the buildings have been used during the training period [36—40], along with
the Building Controls Virtual Test-Bed (BCVTB) [41], which has been leveraged for controls based on
the co-simulation framework [37,38]. The DRL algorithms were used to minimize energy costs while
maintaining thermal comfort by controlling room temperature setpoints [37], air flowrate in the VAV
boxes [38], supply water temperature [39] or outdoor air damper positions [40]. This robust area of
new research is promising, with many approaches to optimal control still in their infancy. There is not
yet an agreed-on standard approach for these problems.

While the majority of research on advanced control algorithms is conducted on simulations, some
studies have deployed those advanced controls on real systems, which allows researchers to test their
software in a live environment with unforeseen system behavior that is difficult or impossible to
include in simulation. MPC control of multiple air handling units (AHUs) or rooftop units (RTUs) in
multi-zone real buildings are demonstrated in [42-46]. Experiments using MPC to control building
systems, behind-the-meter energy storage and DERs have also been demonstrated [47-49]. MPC based
controllers were deployed in office buildings to determine the setpoints for the supply air temperature,
fan speed and the zone air temperature for each AHU [42,43], and West et al. [42] additionally
controlled the chilled water and hot water valve position. MPC has also been used to control the air
conditioning in large spaces that were served by multiple RTUs by turning on/off different stages
of operation of each RTU. These controls were demonstrated in a gym space of a university campus
[44] and in a restaurant [45]. Carli et al. [46] used MPC to control the fan speed of a fan coil unit
that supplies conditioned air to a single office space in a university building. Frequency regulation
as a grid service (by varying the air flow rate setpoints, which resulted in modifying the fan speed)
was implemented in the FLEXLAB® testbed [50] at Lawrence Berkeley National Laboratory [47,48].
A public school building in southern Italy was chosen as a site of demonstration in [49], where the
authors performed their optimizations in the cloud and send the control signals to the Internet of
Things (IoT) devices and controllers that were retrofitted in the school building to control the battery
and various loads through an intermediary gateway. DRL strategies have also been implemented in
real buildings, although in small experiments. Chen et al. [51] used DRL to control the damper position
of a VAV box in a single conference room in a building and Zhang and Lam [52] used it to control the
supply water setpoint to the HVAC system in a experimental test-bed office in a university building.

A core barrier in progressing from simulations to real-world deployment of advanced controls
is the lack of a robust and reliable software infrastructure to implement those controls in real-world
building systems, which often have an eclectic mix of various controllers and systems in place. There
has been work on middle-ware software platforms that collect data from various connected sensors and
actuators across different systems within a building [42,43,46,48,49,53-56]. The ability to retrieve data
from various IoT sensors and devices, store these data centrally and use them for simulations of better
control algorithms have been demonstrated in [46,49,53-56]. Interfacing with the existing proprietary
control software for gathering data and publishing control signals is another common solution, but
this requires site specific implementations as seen in [42,43,48]. Bruno et al. [49] and Carli et al. [46]
introduced a software stack and also demonstrate actual controls capabilities on real buildings based on
decisions determined by the optimization engine. However, the architecture seems rather case specific
with no mention of expansion capabilities to other types of buildings or systems. The VOLTTRON [57]
platform has also been used in research studies for data collection and optimization of flexible
building loads and grid integration, but these works have been in simulation [58-60], in laboratory
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environments [61], or are still in progress [62,63]. Most of the platforms reviewed here employ a
publish-subscribe method of communication (usually Message Queue Telemetry Transport, MQTT [64])
for messaging, which relies upon a central broker, usually residing in the cloud. This is in line with
broader trends for information technology and software services moving to a cloud-based software
architecture, but the buildings industry is justifiably reluctant to adopt this model. Cybersecurity
vulnerabilities and the possible loss of data and control signals during a network outage are major
issues that concern building managers, particularly in commercial buildings. Furthermore, in a
microgrid application there can be loss of network connectivity during a blackout, when the system is
expected to continue working and provide resilience. Hence, having controls that are able to operate in
a mode with local communication and computation may be required to enable widespread adoption
of smart control platforms.

Among the field demonstrations of advanced controls, the scope of controls were limited to a
very small subset of buildings, mostly office spaces and buildings on university campuses, laboratories
or experimental test-beds. Experiments were conducted in well-instrumented environments and
thus presented more measured data for advanced controls deployment than general buildings do.
Most existing studies rely on proprietary software and do not describe the effort required to deploy
both software and hardware, which is critical for replication. While some papers discuss software
implementation, the focus was generally on communication and software architecture, with less
emphasis on the integration of systems and controls with those software. Those that did demonstrate
integration between the controller and the building, deployed a cloud based solution that is susceptible
to network outages and more vulnerable to security risks. The SPO solution presented in this paper
represents an advance in the field studies of advanced building controls by narrowing the gap between
MPC based simulation studies and field demonstrations. The main contributions of this paper are:

e Anintegrated software architecture that supports a vendor- and protocol-agnostic data acquisition
and control framework that enables both local and /or cloud based controls. The architecture is
extensible to other building types, equipment and DERs.

e A field demonstration of this software controlling HVAC, refrigeration and DER using MPC. The
software is deployed in the local area network in a real-world small commercial building.

e A proof-of-concept demonstration of a building controller that is responsive to various grid signals
(time varying energy costs) and that supports demand response events.

e A description of the implementation challenges experienced during deployment and operations,
intended to accelerate the effort of future researchers and practitioners who could avoid these
barriers that have been identified .

3. Controller Architecture and Components

The Solar+ Optimizer (SPO) is a software solution that has been developed to integrate sensors
and controllers for building systems and DERs and to identify real-time optimal control actions for
the connected systems such as building loads and batteries. It supports integration across multiple
devices and protocols, as illustrated in the architecture diagram in Figure 1. Through support for
several communication protocols and APIs, SPO allows integration of systems that are typical for small
and medium commercial buildings. It can operate completely within a local network, but can also
be configured to operate in tandem with cloud-based resources. This section describes the different
software components of SPO that enable these capabilities.
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Figure 1. Software architecture diagram of the Solar+ Optimizer system.

3.1. eXtensible Building Operating System (XBOS)

To coordinate the numerous heterogeneous connected devices and controllers within a building,

robust network communication is a key requirement. Most commercial and academic solutions use
middleware, i.e., software that resides between the hardware devices and other data sources that
produce data and the applications that use these data. SPO uses XBOS, an open-source building
operating system developed for real-time data acquisition from sensors and control of building
actuators [65]. XBOS consists of the following components:

WAVE and WAVEMQ: WAVE is an authentication engine that handles permissions and access
control. WAVEMQ) is a multi-tier publish-subscribe message bus that allows exchange of data and
control signals.

Drivers: Drivers are connectors to real devices and other data sources (e.g., web based services,
emulated devices, etc.). A driver is responsible for gathering data from a device and for controlling
the device in response to requests from an external controller. With the required permissions, a
driver can publish and subscribe to messages on WAVEMQ.

Data Storage: Both operational and configuration data are stored on dedicated databases. There
are separate data stores for the building metadata represented using the Brick schema [66] and for
the continuous real-time data that are being collected by the drivers.

Applications: Developers can write applications on the XBOS platform using real-time data that
is being published on the message bus (e.g., notification service and visualization dashboard) or
using historical data that have been stored in the database (e.g., MPC based optimization engine
and fault detection tools). Applications can publish control signals for the devices on WAVEMQ
and can trigger a change in their mode of operation.

3.2. WAVE and WAVEMQ

WAVE is “an authorization framework offering decentralized trust: no central services can modify

or see permissions and any participant can delegate a portion of their permissions autonomously” [67].
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WAVEMQ is a tiered publish-subscribe message bus that all drivers and applications on XBOS use
to transmit messages [68]. WAVE-based keys and permissions authorize drivers and applications to
communicate with one another. The tiered nature of WAVEMQ is implemented in the form of a single
“designated router” that is deployed on reliable hardware, typically located in the cloud, and additional
message routers at each site, called “site routers”, as illustrated in Figure 2. The services, which can be
drivers or applications that have been granted the required WAVE permissions, can publish (i.e., write)
on or subscribe (i.e., read) to a particular topic (i.e., sensor measurements or actuation commands) on
the bus.

——
DESIGNATED

Unreliable WAN

Reliable LAN

service service service service service service

Figure 2. WAVEMQ: A tiered publish-subscribe message bus [68].

During network outages and loss of connectivity between the site routers and the designated
router, this tiered architecture of WAVEMQ) enables the site router to continue message delivery across
the services hosted locally. By buffering messages that have not yet been delivered to the designated
router since the loss of Internet connectivity, and by re-attempting to publish these messages once
the connectivity has been restored, WAVEMQ also mitigates the risk of data loss. Messages in XBOS
are defined using Google’s Protocol Buffers or protobufs [69] and the native functions and services
are implemented as remote procedural calls using the gRPC framework [70]. These technologies
support platform and language independent development, which means drivers and applications can
be developed in any programming language and they can use the auto-generated language specific
bindings for functions calls and message transmission.

3.3. Drivers

Drivers are the components of XBOS responsible for presenting a uniform communication
interface, to local hardware devices and external software applications, that is agnostic to the particular
protocols and networks used by those devices and applications. Figure 1 shows some examples of
hardware devices that can be integrated using XBOS drivers: environmental sensors, electric meters,
HVAC controllers, battery controllers, solar inverters, etc. Internet weather services and utility APlIs
for power prices are few examples of external software applications from which drivers gather data.
These devices and services communicate over a variety of protocols, including older, legacy equipment
such as refrigeration or HVAC controllers that communicate over wired, non-Internet Protocol (non-IP)
based protocols such as Modbus serial [71] or BACnet MS/TP [72]. In such cases, it is essential to set
up the drivers locally within the building’s physical network. The drivers also translate the data from
the device to the necessary protobuf format required to publish it on WAVEMQ and also interpret the
control signals from XBOS applications to equivalent commands for the devices (e.g., changes to the
HVAC setpoints or battery charge rate, etc.).

3.4. Data Storage

Data storage to the database on each WAVEMQ router is handled by an XBOS service called
the “data ingester.” This service, along with the tiered WAVEMQ message bus, allows SPO to access
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multiple data stores for the same data at different designated and/or site routers, as needed, without
configuring additional data replication or mirroring scripts. SPO takes advantage of this feature by
providing the capability of deploying the whole system—the drivers, data storage and optimization
engine—locally with a building’s local area network, provided that all the required data can be
obtained from local devices and services.

For buildings and sites that allow both cloud and local communication, the preferred approach
is to deploy the essential and critical drivers and applications such as sensor and actuator drivers
and optimization engine locally and deploy drivers that communicate with web services (e.g., utility
demand response (DR) servers, weather APIs, etc.) and read-only applications (e.g., benchmarking
tools and visualization dashboards) on the cloud. Such a strategy limits the drivers that have access to
local actuators to be located within the local network, and also reduces the chance that a controller
remains in a suspended state due to loss of connectivity to cloud-based intelligence. With this network
configuration, multiple data ingester services can be configured across the local site router and the
cloud designated router. While the local ingester ensures that the most recent data are always available
locally for the optimization engine and other critical applications, the ingester on the cloud can store
the messages to a more persistent cloud data store for permanent storage and analytical applications.
This preferred architecture is illustrated in Figure 3.

1
lM< WAVEMQ SITE ROUTER
| \

1
1
1
Possible loss of :
1
1

WAVEMQ DESIGNATED ROUTER
| | I

1

1

1

1

1

1
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1 o 5 N
1| Applications Drivers
1

1

1

1

1

1

1

connectivity Critical
E.g.: E.g.: grid Data Cloud [EEESCRRIChol || Drivers Data Local data
visualization ||| communication Ingester persistent E.g.: Ei O LRHVEC Ingester store
dashboard s client data store Optimization controller
Engine

Figure 3. The services on the site router continue to run even during network outages.

The caveat in Figure 3 is that the critical applications on the site router should not require any
data from the drivers on the designated router. If applications require data from external web services,
it is recommended to host the drivers that are querying them directly on the site router to minimize
points of failure.

3.5. Applications: Optimization Engine

Existing solutions often use proprietary platforms and site-specific specifications for generating
and sending optimal control signals to devices. Similarly to how XBOS is used as middleware platform
by SPO, the open-source package MPCPy [73] is used to implement MPC-based optimization in an
extensible and open-source framework. SPO integrates MPCPy as an XBOS application, extending
its capabilities to interact with real-time systems. This application, labeled as the “Optimization
Engine” queries historical data and future forecasts from the data store, solves the optimization
problem using the MPCPy framework and publishes control signals to devices through WAVEMQ.
Figure 4 depicts this interaction between the optimization engine, the data store and the device drivers.
Through this implementation, SPO provides a scalable, protocol- and manufacturer-independent
solution for implementing advanced building controls. This section details the components of the
optimization engine.
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Figure 4. The optimization engine component and its relationship to other parts of SPO.

3.5.1. MPCPy

The MPCPy package [73] is designed to facilitate the simulation, testing and implementation of
MPC for building systems. It includes several generic capabilities such as solving optimal control
problems with constraints, parameter estimation and validation, interaction with real and /or emulated
building systems, and data processing including weather, internal loads, grid signals, etc.

3.5.2. Model Formulation

MPCPy utilizes models defined in the Modelica language [74], an equation-based multi-domain
language to model complex physical systems including mechanical, electrical and deterministic
control systems. These models can be used to predict the future system behavior and to support
linked simulation-optimization problems. For use in optimization, MPCPy focuses on the use of
simplified physical models, often known as “grey-box” models. These grey-box models include
sufficient detail about the building systems to simulate overall responses but not the specific details
of typical expert-defined building energy models. The goal is to balance model specificity with
computational efficiency for use with optimization solvers. MPCPy utilizes JModelica.org [75] to
generate and solve a control optimization problem based on the user-provided Modelica model,
objective and constraint information and input data (e.g., weather or electricity prices). J]Modelica.org
uses CasADi [76] to compute function derivatives and the optimization algorithm IPOPT [77] to solve
the resulting nonlinear problem. IPOPT, short for interior point optimizer, is a state-of-the-art nonlinear
optimization library to solve large-scale continuous system optimization problems.

3.5.3. Optimization Configuration for Grid Interactions

Using the MPCPy framework, the SPO optimization engine is designed to minimize the cost
of building operations subject to various DR scenarios or grid price signals. SPO can optimize for
different types of peak-load reduction DR events (e.g., through utility programs such as Peak Day
Pricing [78] or Critical Peak Pricing [79]), as well as dynamic prices [80,81]. At its most basic level,
SPO minimizes electricity bills of buildings that are subject to Time-Of-Use (TOU) tariffs that contain
both energy and demand charges. Other modes of operation for responding to signals from the grid
are shown in Table 1, including real-time pricing, demand limiting, load shedding, load shifting and
load tracking.

The optimization engine is structured in a flexible way so that the various responses to grid
signals can be easily configured and swapped. This is achieved by formulating the objective function
in a generic way, translating the grid signals into components of this parameterized function and
into constraints of the optimization problem. The various options are stored in variables of a
configuration file to easily switch between modes. Table 1 summarizes the five grid signals and
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the corresponding configuration in the optimization engine. The constraints presented here only relate
to the grid-responsive modes, excluding other constraints related to system operation (e.g., indoor
temperature boundaries).

Table 1. MPC configuration for handling different grid signals.

Mode Objective Information in the Signal Constraints
Price Minimize cost of Energy price and/or
demand charges, None
based energy and/or power .
estimated peak power
Energy price and/or
Demand  Minimize cost of demand charges,
. e . P S Pmax
limiting energy and/or power estimated peak power,

maximum power Py

Energy price and/or
demand charges,

Load Minimize cost of . P < Ppusetine — Pspea for
sheddin: energy and/or power estimated peak power, [t . latanz lm]e et
& &Y p baseline power Ppygseiines starts” final
Pyjed, start time, final time
Energy price and/or
demand charges,
estimated peak power, P > Pyasetine + Pincrease for
. baseline power Py ,qo/ine, t i St final i
Load Minimize cost of b IP) baseline ;[irsltézlrt,mcrease fmal,mcreuse]
shifting  energy and/or power decrease, “increases
start increase time, P < Ppusetine — Piecrease fOr
final increase time, [tsturt,decrease/ £ final,decrease]
start decrease time,
final decrease time
Load Minimize error against Reference power
; ; fil ‘ pP— Preference |< €
tracking  reference power profile profile P ference

3.5.4. Supervisory Control Scheme

MPC is a receding horizon control process, which can be briefly described as follows: at each
sampling interval, system states are measured or estimated and fed back to the controller model to
update the model states. With the updated information, the controller predicts the system behavior
based on the built-in model within the control horizon (e.g., the next 6 h) along with disturbance
forecast such as weather and occupancy. The optimization algorithm then tries to find an optimal
solution by minimizing the objective function subject to the latest system constraints. The first control
action is implemented and then the MPC engine relaunches a new optimization at the next control
interval. The SPO optimization engine follows this approach, but it is designed to be a supervisory
controller, i.e., it does not replace but rather interacts with local controllers such as thermostats. The
optimizer periodically (e.g., every 5 min) sends optimal setpoints to the local controllers, and they
control the equipment through traditional control loops at a finer time scale (e.g., 1 s).

3.5.5. Weather Forecast

The optimization engine requires weather forecast data to operate. The SPO weather forecast
module predicts solar radiation using data from external weather forecast services. Hourly forecasts of
outdoor dry bulb temperature, relative humidity, wind speed and cloud cover for the duration of the
control horizon (e.g., 6 h into the future) are required by the controller. A solar forecast model has also
been implemented in this module to calculate the global solar radiation [82]. The direct and diffuse
solar radiation are further computed based on the predicted global solar radiation [83]. Based on the
predicted solar radiation, the plane-of-array solar radiation can be easily calculated and used as inputs
for building and photovoltaic (PV) system models.
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4. Evaluation

In this section, the performance of the SPO solution in a real commercial building is evaluated.
It begins with the description of the site where SPO has been deployed, the hardware and software
details, followed by the specifications of the optimization engine and concludes with the results of
how SPO controls the building’s loads and its distributed energy resources in response to different
grid signals.

4.1. Site Description

The SPO has been deployed in a convenience store/gas station in Blue Lake, California, United
States at the Blue Lake Rancheria. Being located at the edge of the utility service territory and in
a generation-constrained area of Humboldt County in California, this site is at a strategic point for
supporting grid reliability. The refueling and cold storage services provided by the store are recognized
as critical community needs by the operators, particularly during blackouts or natural disasters, which
drives their interest in energy resiliency at the site. Strongly tied to this motivation is the requirement
for network resilience, that is, being able to operate in an Internet-disconnected mode as well. A unique
aspect about this particular building is that it is attached to a casino complex and hence the store also
contains gaming machines. The presence of these machines within the convenience store means there
are regulatory requirements for network and firewall restrictions that prevent any control signals from
originating outside their local network. The site has a unique combination of a real need for resilience
and a site with professional IT network staff who require robust cybersecurity.

The store is typically open 24 h a day, 7 days a week and serves frequent customers throughout
a day. The space inside the store is conditioned by two separate two-stage roof top units (RTUs),
virtually (but not physically) dividing the store into an “east zone” and a “west zone”. These RTUs are
controlled by individual thermostats that have been installed in the corresponding zones. The store
also has a walk-in refrigerator for storing and displaying beverages through a set of glass reach-through
doors and a walk-in freezer for storing and displaying ice-cream and frozen food. The site has 60 kW
of local solar power generation capacity along with a battery with 174 kWh of energy storage (and
power capacity of 109 kW). As seen in Figure 5, the solar panels are installed on the gas station canopy
and the energy storage unit is a Tesla Powerpack.

(a) 60 kW local solar power capacity (b) 174 kWh local energy storage capacity with a peak
output of 109 kW
Figure 5. Distributed Energy Resources installed on site.

The typical daily energy consumption is about 800 kWh (or 33 kW average demand), with
an hourly average load profile illustrated in Figure 6. However, the gaming machines in the store
contribute a significant portion of the total electrical load, and only about 15 kW of the electrical
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demand is for the thermal systems (i.e., the two RTUs, the refrigerator and the freezer), which are
controllable by SPO. The remaining uncontrolled demand is primarily from gaming machines that
are located in the store. The building exhibits peak demand in the early morning and early evening
periods—both prime targets for thermal load shifting to alleviate system stress around sunrise and
sunset. It currently operates on the E19S electricity tariff offered by Redwood Coast Energy Authority,
a community-choice aggregator that provides retail options to customers in Humboldt County who
could otherwise be served by the distribution utility, Pacific Gas and Electric Company [84]. The site
soon plans on moving to the B19 tariff [85]. Both these tariffs contain time-of-use energy charges
($/kWh) and time-of-use demand charges ($/kW), with the key difference being the timing of the
peak prices. In B19, the peak prices occur later in the day, between 16:00 and 21:00 daily to account
for the growing duck-curve problem in California [86], while E19S is a legacy tariff with the peak
prices during the 12:00-18:00 period that historically included coincident peak demand. The building
operators are motivated to reduce their overall energy costs by reducing energy consumption and by
effective management of the peak loads on the grid.
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Figure 6. Daily load profile of the convenience store across different seasons.
4.2. Hardware and Software Set Up

Given the cybersecurity requirements at the site, the SPO system uses local drivers with local
storage and an MPC-based optimization engine. The local SPO server with a WAVEMQ site router has
been hosted on an Intel NUC computer with an Intel i7 processor and 2TB of internal disk capacity [87]
at the site. The designated WAVEMQ router is hosted on a cloud server, which is also attached to a
persistent data store, also in the cloud. InfluxDB [88] is utilized as the timeseries database, both in the
cloud and on the local server. The local server has been configured with a retention policy to only
store the most recent two weeks of data that might be relevant for the optimization engine. The local
server also hosts the drivers that communicate with each of the devices and/or services (over the
protocols mentioned) listed below, reading data once every minute and publishing to the WAVEMQ
message bus. There are data ingester services set up both at the site router and the designated router to
store these published messages in the local and the cloud-based InfluxDB databases, respectively. The
drivers for the controllers also subscribe to the ‘optimal setpoints’ being published by the optimization
engine so that they can change the setpoints of the controllers.

The list of data sources and/or controllers, with their respective communication protocols are
given below:
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e  Electricity Meters: The building has six Continental Controls Wattnode power meters [89] that
measure the power consumption of: whole building, west zone RTU compressor, east zone
RTU compressor, refrigerator compressor, refrigerator evaporator fan and freezer compressor
and evaporator fan, respectively. These devices measure instantaneous power parameters and
communicate over Modbus serial.

e  HVAC: The two RTUs are controlled by two separate KMC Flexstat 120063CEW [90] thermostats,
which communicate over BACnet/IP. The preferred temperatures in the west and east zone are
20.56 and 21.67 °C (or 69 and 71 °F, respectively), respectively. The heating and cooling setpoints
of the thermostats are controlled by the optimizer.

e  Refrigeration: Sporlan Parker PSK214 Modbus (serial) [91] refrigeration controllers are used to
control the large refrigeration systems. By default the freezer is set to an indoor temperature
of —21.67 °C (=7 °F) and the refrigerator to 0.56 °C (33 °F). During the experiments, the SPO
controlled the indoor cabinet temperature setpoint of the equipment.

e PV and Battery: The inverters of the PV panels and the battery are interfaced with a Schweitzer
Engineering Laboratories SEL-3505 Real Time Automation Controller (RTAC) [92]. The RTAC is
the short-timescale microgrid controller for this system and it handles power flows, circuit
switching and safety aspects during the grid-islanded system operation. However, due to
certain restrictions at this site, the RTAC only allows ‘read’ operations (over Modbus(TCP))
to be performed by the SPO.

e Emulated Battery: As the Tesla battery on site only allows ‘read’ operations, a software-based
emulated battery is used for the experiments. This battery has been scaled down to a size that
makes sense for conventional small and medium convenient stores (without power-hungry
gaming machines, but HVAC and refrigeration). The emulated battery has a total capacity of 27
kWh, with a peak output of 14 kW (equivalent to two Tesla Powerwalls [93]).

o  Weather: The current outdoor temperature, cloud cover, relative humidity and wind speed data,
along with their 48-h forecasts, are collected from the DarkSky weather service’s REST API [94].

e  Grid Signals: Provides information about the prices based on tariffs or dynamic prices and/or
could also publish information about scheduled demand response events. While this is currently
implemented as library function that retrieves the grid signals from a static database, retrieving
the real-time or day-ahead Independent System Operator (ISO) prices or dynamic prices from a
utility using protocols such as IEEE 2030.5 [95] or OpenADR [96] are planned future work.

Table 2 provides a list of data and their respective sources that are required for the optimization
engine. A summary of the controllers and the variables that can be controlled, with the default values
and lower and upper bounds, is given in Table 3. These limits were provided by the convenience
store operators after considering the requirements for indoor air conditioning and food storage. The
limits have been encoded into the respective drivers so that even if the optimization engine produces a
setpoint outside the limits, the drivers can ensure that those values are not set on the actual device. It
is to be noted that the list of variables in Tables 2 and 3 are a subset of variables that can be read from
or written to each of the devices.
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Table 2. List of data sources and relevant variables (Inputs to the optimization engine).

Source Protocol Variables
Wattnode Meter Modbus (serial) active power (W)
KMC Thermostat BACnet/IP indoor temperature ( °C)
Refrigeration Controller Modbus (serial) cabinet temperature ( °C)
PV production (W)
RTAC i\é[giljl;us battery charge/discharge rate (W)

battery state of charge (%)

battery charge/discharge rate (W)

Battery (emulated) ) battery State of Charge (%)

outdoor temperature ( °C)
cloud cover (%)
Dark Sky API HTTP relative humidity (%)
wind speed (mph)
and 48-hour forecasts of these

price of energy ($/kWh)
demand charge ($/kW)
amount of load limit/shed /shift (W)

Grid Signals (tariffs, dynamic prices,
Demand response events)

Table 3. List of Controllers and their relevant variables (Outputs of the optimization engine).

Controller Protocol Control Variables Default  Lower Limit Upper Limit
heating setpoint 19.44 °C 17.22°C 22.22°C
Thermostat East BACnet/IP cooling setpoint 21.67 °C 19.44°C 23.33°C
heating setpoint 18.33 °C 17.22°C 22.22°C
Thermostat West  BACnet/IP cooling setpoint 2056°C 1944 °C 23.33°C
Freezer Modbus (serial)  cabinet temp. setpoint —21.67°C ~ —34.44°C —18.89 °C
Refrigerator Modbus (serial)  cabinet temp. setpoint ~ 0.56 °C 0.56 °C 3.33°C
Battery (emulated) - charge/discharge rate ow —14 kW 14 kW

4.3. Optimization Engine Set Up

4.3.1. Modeling

As mentioned in Section 4.1, the main occupied zone in the store is conditioned by two RTU
systems. One of the two food storage rooms is conditioned by a custom-made refrigeration system;
the other by a freezer. The layout of these spaces is captured by the building model, which includes
four thermal zones: two RTU zones, one refrigerator zone and one freezer zone. The building zones
are modeled using the lumped resistance and capacitance approach: each zone is represented by one
resistance and one capacitance and connected with each other thermally. The overall building thermal
model is therefore a linear fourth-order model. The battery system is modeled based on the bucket
model approach by considering the battery as a repository for energy [97]. The state variable is the
battery SOC and the input is the real power that should be stored in or extracted from the battery. The
PV system is modeled with a constant efficiency and the input is the predicted plane-of-array solar
radiation. The linearity of these models allows efficient computation for the optimization algorithm,
which takes about one minute to converge to an optimal solution in these experiments. Figure 7 shows
the MPC model structure and its interaction with the local controllers.
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Figure 7. MPC model structure.

The weather parameters considered for the building are the dry bulb temperature and the solar
radiation. The dry bulb temperature forecast is obtained from the Dark Sky API based on the site
latitude and longitude. The solar radiation forecasts for the building and PV system are predicted
using the built-in model as described in Section 3.5.5. The prediction horizon used in the experiments
is 6 h. The store zones are occupied by staff for 24 h each day. The occupancy disturbance is therefore
not considered. The major internal load disturbance in the store is from the gaming machines, which
emit heat directly to the zone. These machines are in operation 24 h per day. This internal thermal
load is therefore assumed to be constant in the model. The system constraints for MPC used in the
experiments are defined by the facility staff and are summarized in Table 3. The thermal comfort
setpoints for the HVAC system are constrained to values between 19.44 °C (67 °F) and 23.33 °C (74
°F). The constraints for the freezer cabinet temperature setpoint are from —34.44 °C to —18.89 °C (—30
°F to —2 °F). The constraints for the refrigerator cabinet temperature are from 0.56 °C to 3.33 °C (33
°F to 38 °F). The battery cannot be charged more than 95% and discharged below 25% of its total
capacity. The maximum charge or discharge power is 14 kW. The upper and lower bounds for the
power consumption are calculated for each grid signal, as shown in Table 1.

The system states of the model are the space temperatures of the RTU systems, cabinet
temperatures of the refrigerator and freezer system and the battery SOC. These values are all measured
and thus there is no need for state estimations in the MPC formulation. The measured states are
updated in the model at each control interval (5 min). The control inputs for the model are the heating
or cooling rate for the RTUs, the cooling rates for the refrigerator and the freezer, and the battery
charging and discharging rate. The control outputs are the supervisory setpoints for each individual
system: zone setpoints for the RTUs, refrigerator setpoint, freezer setpoint and charge/discharge
power setpoint for the battery. When the setpoints are sent to each controller, the controller decides its
operation mode based on its internal control loop implemented by the manufacturer. For instance, the
thermostat receives the optimal setpoint and determines whether to switch the RTU heating or cooling
state ON or OFFE.

4.3.2. Controller Start-Up

The controller needs to be instantiated once the system model has been specified. During
this process, the software loads and initializes all the components including the MPC model, the
optimization problem, the system states (measured temperatures and SOC), the inputs (outdoor dry
bulb temperature, solar radiation, grid signals and constraints) and the outputs (setpoints), based on
the configuration. The objective function and associated constraints to grid signals, as summarized
in Table 1, are automatically updated according to the goal of each experiment. At every control
interval, the software calls the instantiated controller to solve the optimization problem and pushes
the solutions to the respective devices over WAVEMQ. A single instance of the controller can handle
different types of grid signals and only requires re-instantiation when configuration parameters (e.g.,
new input sources and modified outputs) are changed.
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4.4. Experiments

To evaluate the performance of the SPO, the system was subjected to different grid signals (as
shown in Table 1) and the optimal setpoints that were generated were pushed to the equipment
in the building. This paper presents the results of three tests: (1) a dynamic pricing signal; (2) a
Time-Of-Use (TOU) tariff; and (3) a demand limiting signal. While most commercial buildings in the
US are enrolled in a TOU tariff rate, some utilities are moving towards use of dynamic pricing for
grid integration [80,81]. These prices are also considered as the replacement for event-based demand
response programs. These use cases are a representative collection of legacy (i.e., TOU tariffs and
event-based demand response programs) and emerging (i.e., dynamic pricing) interaction mechanisms
between grid and building-level microgrids.

By specifying a linear regression model based on the weather, solar production and building
load data from ten days prior to each experiment (excluding days when SPO was being run), a
weather-normalized baseline has been calculated for each of the following experiments. The battery
was excluded from the baseline formulation because it was not operated during the period of baseline
data collection. For all the experiments, the preferred temperatures for the HVAC zones are 20.56 °C
(69 °F) and 21.67 °C (71 °F) for the west and east zones, respectively. The key metric used to evaluate
the performance of the SPO system is the total cost of electricity (including both energy and demand
charges) since the primary objective of SPO’s optimization engine is to minimize this cost. This is the
cost incurred due to the net load consumption supplied by the grid. All variables in the following
equation are assumed to be non-negative.

netload = totalbuildingload — powerproducedbyPV + batterychargingrate — batterydischargingrate.

4.4.1. Dynamic Prices

This test, conducted on 17 May 2020 evaluated the behavior of the SPO in response to dynamic
prices. A grid signal containing a 24 hour price forecast for the event day was generated and published
on WAVEMQ. The prices were based on the wholesale market prices obtained from the California
Independent System Operator (CAISO), the entity responsible for the California energy markets. These
prices reflect the duck-curve dynamics in California, which occur when the net electricity demand
drops during mid-day due to large amounts of solar generation during that time. The demand ramps
up rapidly in evening hours as the sun sets, but air conditioning loads continue to be present due to
the thermal lags in buildings, and many people return home and begin evening activities.

Figure 8 shows the results of the dynamic price test. Section (a) of the figure shows the driving
variables: dynamic prices and solar irradiance. Section (b) shows the battery state of charge, and the
resulting net load controlled by the SPO, compared to the baseline power profile. Section (c) shows the
SPO generated setpoints for the HVAC zones and their corresponding temperature profiles.

The expected behavior of the system is that the battery, the HVAC and the refrigeration loads will
be controlled to minimize consumption during high price times and shift consumption to low price
times, subject to the constraints on comfort and other factors. In the operational test, this behavior was
observed in broad terms. Figure 8b shows how the net building load was lower at times of high prices
and higher during the beginning and the middle parts of the day when prices were low. This was
achieved through a combination of battery dispatch and modification of thermal setpoints. Deviations
from this baseline are attributed to the behavior of the control system.

The baseline load was much lower the first 6 h of the day as the battery was charged to full
capacity during these hours. This was in preparation of the increasing prices, starting from 06:00,
when the battery discharges completely to support the building load (Figure 8b). The battery was
controlled similarly during the high price periods that occurred later in the day as well. From the
slope of the battery state of charge, it is evident that the rate of charging and discharging change also
vary according to the the price fluctuations. In Figure 8c, it can be seen that the responses of HVAC
systems were mainly for the second peak in the afternoon. From around 12:00 to 17:00, the battery
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was in charging mode and the cooling power usage was kept minimum as the indoor temperatures
were increasing. Once the battery began to discharge, the HVAC systems began to bring the indoor
temperatures back to the preferred temperatures slowly. Even though the HVAC systems used more
power during the high price duration, the net energy use decreased as battery was discharging. Due to
very strict constraints on the temperatures and also owing to undersized equipment, there were hardly
any changes in the operation of refrigeration systems. However, the temperatures of both the freezer
and refrigerator were maintained within the bound set by the convenience store operators.
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Figure 8. (a) SPO’s response to hourly dynamic prices and varying solar irradiance. (b) Through
battery discharge and reduction in building load, where the net load is minimum during high price
times and the battery charges during the low price times anticipating the high price period. (c) SPO
changes the thermostat setpoints to vary the zone temperature. Preferred temperatures: 20.56 °C (69
°F) for the West Zone and 21.67 °C (71 °F) for the East Zone.
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As there were no demand charges in this signal, the total cost of electricity constitutes only the
energy cost, which is calculated by multiplying the hourly energy charge with the hourly energy
consumption. The total cost for this day was $59.14 for the SPO optimized actions as compared to the
$68.72 for the baseline load, generating a savings of 13.94%.

4.4.2. Time-Of-Use Prices

This experiment, conducted on 15 May 2020, tested the response of SPO to the winter TOU rates of
the B19 tariff [85]. This tariff contains time of use based energy prices and demand charges. Figure 9a
shows the solar irradiance, demand and energy charges. The peak price window for both demand and
energy charges are from 16:00 to 21:00 Figure 9b shows the battery and net load responses, controlled
by the SPO. Figure 9c shows the HVAC zone setpoints that were generated by SPO and the actual
temperatures for these two zones (gaps in the chart are due to missing data, where the thermostats
temporarily lost network connection).

In response to the peak prices, the battery began to charge quite late until the PV generation began
to get online and charged up to its maximum of 95% of its capacity right before 16:00 and started to
discharge until 21:00, the end of the peak period. The HVAC systems started pre-cooling very early at
around 07:00 Then, it started to increase the indoor temperatures once the battery began to charge.
During the beginning hours of the peak period, the temperatures were maintained as high to reduce
the HVAC load. Then, the HVAC west began to cool down the space as the accumulated penalty of
deviating from the setpoint began to get high. With regards to the refrigeration systems, there were
still hardly any periods when the temperatures were allowed to rise, but they always remained within
the limits.

Table 4 compares total electricity costs incurred in these 24 hour for the SPO optimized building
against the building’s baseline load for this day (shown in Figure 9b). The energy cost is calculated
as described in the previous experiment and it can be seen that SPO was able to save 10.33% of
the total energy cost. Calculating the total demand cost and the subsequent savings is slightly more
complicated. The total demand cost is the sum of the demand costs across all the different TOU rate
periods (e.g., 16:00-21:00). The maximum load (load refers to the 15-min average power consumption)
for each rate period across the whole billing cycle (typically monthly), or, in this case, the whole day,
multiplied by the corresponding demand charge is the demand cost for that period. This introduces
the caveat that the demand cost shown in Table 4 might not be the final demand cost for the full billing
cycle. Hence, for the purposes of evaluating this experiment, the billing cycle is assumed to be one day.
Under this assumption, SPO reduced the total demand cost by $21.13. For a realistic billing cycle of a
month, through continuous peak demand management by SPO, much higher demand cost savings
can be accrued.

Table 4. Comparison of estimated costs for energy and demand between SPO and Baseline controls.

Costs SPO Optimized Load Baseline Load
Energy Cost $61.42 $68.63
Demand Cost $793.86 $814.99

Total Cost $855.28 $883.62
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Figure 9. (a) SPO’s response to a TOU tariff with both demand charges and energy costs and varying
solar irradiance. (b) The battery is used effectively for reducing net load during peak price hours. (c)

SPO changes the thermostat setpoints to vary the zone temperature. Preferred temperatures: 20.56 °C
(69 °F) for the West Zone and 21.67 °C (71 °F) for the East Zone.

4.4.3. Demand Limiting Event

Demand limiting “refers to shedding loads when pre-determined peak demand limits are about
to be exceeded ... and this is typically done to flatten the load shape when the pre-determined peak is
the monthly peak demand” [98]. Coordinated load limiting efforts across multiple buildings helps to
reduce the stress on the utility during peak hours.

An experiment was conducted in May 2020 to test the response of SPO to a demand-limiting
signal. The signal constrained demand to 26 kW from 06:00 to 08:00., given that minimum baseline
load during this period is 32.9 kW. Figure 10a depicts the response of SPO: the building reduced its
average power consumption at 06:00 to 26.30 kW from 32 kW at 05:30. Figure 10b shows that this was
achieved by reducing in the power consumption of the two HVAC units from 06:00 (in yellow and
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orange) and a drop in power consumption of the freezer unit at 07:30. However, the battery state of
charge remained nearly flat throughout the event as SPO decided not to employ the battery during it.
This is evidence of SPO’s intelligent load control capabilities as it is able to coordinate the controllable
load without depending on the battery to handle grid signals.
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Figure 10. (a) Reduction in net load during a 26 kW demand limiting grid signal from 06:00 to 08:00 (b)
Breakdown of controlled loads; HVAC and freezer loads cause the decrease in net load consumption;
the battery was not used during this event.

5. Discussion

Overall, this work represents a proof of concept for an open-source, extensible, cyber-secure
software system that can optimally control energy use in a microgrid.

5.1. Benefits to Developers

A core design intent of SPO was the ability to be modular and extensible, unlike solutions
presented in previous studies [43,46]. For this reason, SPO was developed on top of modern
open-source projects such as XBOS and MPCPy. Its core communication infrastructure, based on
a distributed and secure message bus [68] and gRPC [70], allows developers to seamlessly replace
components such as databases, optimization engines and drivers. For instance, the native XBOS data
store was replaced by another time-series database [88], due to the cybersecurity requirements of the
demonstration site. The use of gRPC is an innovative feature compared to other open-source projects
[57,99], and it allows developers to use languages they are more familiar with or are more advantageous
for a particular application. Hence, XBOS drivers have been developed in both Go and Python as
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part of this project. Further, native integration with BRICK metadata schema [66] is a distinctive
feature of SPO. BRICK is an emerging “open-source effort to standardize semantic descriptions of the
physical, logical and virtual assets in buildings and the relationships between them” [100]. BRICK
avoids hard-coding sensor names in the software, making the application more portable between
buildings. For instance, instead of representing a sensor as “supply_temp_VAV002_AHU01”, BRICK
queries can search for the ID of the supply air temperature sensor in any VAV belonging to any AHU.

During the model construction and calibration phase, the use of MPCPy was crucial to make
the software more flexible. MPCPy affords the construction of multiple systems that can be quickly
replaced with others, as long as the inputs and outputs stay the same. This allows rapid switching
between emulated components and real components (e.g., a virtual battery with a real battery) and
vice versa. Furthermore, it provides the possibility to run the optimization engine in “shadow mode”
(i.e., the optimal controller computes setpoints, but it does not send them to the actual devices) and, if
necessary, to quickly swap to controlling the real systems. This setup allowed debugging the system
with real-time data but avoided loss of comfort or disruption of business operation.

5.2. Challenges of the Real World Deployment

The real-world deployment of SPO was a useful step to test the robustness of the implementation
and understand the challenges with real systems. The lessons learned during this process are
summarized in Table 5.

Table 5. A summary of challenges faced during the implementation and deployment of SPO.

# Category Description of Challenge

Technical Limited choice of secure connected devices with local communication interfaces

Uncertain service and support for connected products, web services and

2 Technical underlying libraries (e.g., discontinued services, APIs changes).

Complex interaction of advanced supervisory control with local control in each

3 Technical connected device (e.g., thermostat hysteresis and defrost control).

Overconstrained systems (e.g., undersized refrigerator with tight temperature

4 Technical control bands)

Faulty equipment and sensors that make modeling harder due to unexpected behavior

> Technical and incorrect representation of the system state

Unmodeled and unmeasured effects in the systems (e.g., unknown occupancy, door

6 Technical opening, internal gains due to uncontrolled equipment)

Conflicting objectives and different risk tolerance between occupants/managers and

7 Organizational : .
TEANZAtONAl  osearchers (e.g., thermal comfort, refrigerator temperature swings)

8  Organizational Strict site/organization procedures and requirements (e.g., cybersecurity procedures)
9 Logistic Delays in equipment deliveries (e.g., components in high demand)
10 Logistic Faulty new equipment that needs to be replaced

Long lead times to work with highly-regulated, risk-adverse entities (e.g., utilities to
11 Regulatory sign off on the interconnect agreement, receiving approval before battery and
PV commissioning)

Unfortunate and unforeseen natural disasters (e.g., power shutoffs due to threats of

12 Exceptional wildfires, COVID-19 pandemic)

Selecting sensors and controllers for the project proved to be the first hurdle. While there is a
proliferation of new IoT and smart home devices on the market, very few met the cybersecurity and
local control requirement of the project. In particular, to access the API of most smart thermostats,
an Internet connection is required. This was undesirable for a microgrid that needs to work during
network outages. Eventually, a BACnet thermostat was selected for installation, although its cost was
significantly higher than other alternatives and it did not provide native data encryption. There is a
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clear need for modern connected devices that meet the requirements of commercial buildings and
microgrids. The deployment process also revealed the effect of the fast rate of change of the online
services and IoT market. In the middle of the project, the weather service used to gather weather
forecasts for the site had to be replaced, because its free service was terminated after a corporate
acquisition. As this paper is written, the new weather forecast service was also acquired by a different
company and there is uncertainty about the future of the service and APL

Precise control of refrigerator and RTU operation through these networked controllers represented
another challenge. Often, the details about the local control loop (e.g., deadbands, hysteresis and other
safeguard mechanisms) were not provided by the manufacturer and they had to be reverse-engineered
by the research team. While these features are useful to protect the equipment, they added uncertainty
to the results of each control action determined by the supervisory controller. Additional issues
related to the ability to control the system emerged when it became clear that the refrigeration system
was undersized and its temperatures tightly prescribed, allowing for little flexibility in its operation.
Unlike typical commercial buildings, the 24-h operation of the store also added challenges and unique
problems for the testing of the system deployment. Conflicts between local temperature adjustments
by the staff and the setpoints suggested by the system also emerged. In the system monitoring process,
unexpected data were often observed. In one instance, the store temperature kept dropping even
though the cooling systems had not been running . Analysis revealed that the door openings had a
large impact on the thermal conditions of the store. This type of event was very difficult to characterize
in the model. The placement of the sensors in the store also impacted the controls. As additional
sensors were not installed in the store, the measurements from the temperature sensors located within
the thermostats and the refrigeration controllers were used to determine the state of the system.
Unfortunately, these devices were installed away from the areas where staff and customers typically
orbit, and hence did not capture the user comfort.

As it is typical of deployment projects, the research team had to work with multiple departments
within the same organization, each having their own set of requirements. Building occupants expressed
concerns about temperature oscillations during experiments. The IT department defined strict
cybersecurity requirements and access control procedures. These issues were resolved through clear
and responsive communication with all parties involved at all times, providing frequent and regular
updates and expectations. Providing the local staff with a real-time dashboard and alarm/notification
system was a very effective way of keeping them engaged and updated. However, these needs also
impacted the number of experiments allowed and their boundaries.

Further, the overall project schedule was significantly delayed because of logistical issues (i.e.,
unforeseen delays in equipment delivery and faulty equipment) regulatory requirements (i.e., working
with utilities to sign off on the relatively novel microgrid interconnect agreement and receiving
approval before battery and PV commissioning) and unfortunate and unforeseen natural disasters
(i.e., power shutoffs due to wildfires and the COVID-19 pandemic). Although this combination of
circumstances was unique, field deployments of advanced technologies should account for delays
in their timeline. The delays that were experienced due to the wildfires and the pandemic only
underscore the value of research that is focused on accelerating deployment of these systems. While
it is unreasonable to expect that every microgrid would face similar challenges, a core goal of
deployment-focused research must be to identify solutions to these challenges and improve the ability
of developers to deploy advanced energy systems at scale.

5.3. Limitations and Future Work

During field tests, the SPO system demonstrated the ability to respond to both price- and and
demand- based grid signals, using all the controllable loads: the battery, the two RTUs, the freezer
and the refrigerator. The system has been collecting data from the local controllers and sensors
for almost a year and has been controlling the equipment for seven months at the time of writing
this paper. However, thus far the experiments have lasted approximately one week at a time and
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the results presented in the paper covered only a single day of operations. Thus, there needs to
be further prolonged testing to evaluate the performance and the robustness of the system in the
long run. Additionally, the baseline load for each of the experiments has been determined using a
linear regression model based on historical environmental and building load data. In addition, the
focus of this paper is to demonstrate an integrated software solution in a real building rather than
precisely investigating the performance of the optimal control algorithm . The next steps in the
research project involve determining more accurate baselines (statistical techniques such as Random
Forest Regression, Autoregressive integrated moving average (ARIMA), etc.) and improving and
evaluating the performance of the optimization algorithm by comparing it against other advanced
control solutions.

Currently, the measurements recorded by the temperature sensors that are embedded into the
thermostats and the refrigeration controllers have been used by SPO’s optimization engine. While this
characteristic allows easy deployment of SPO, there has been work planned to improve the building
model by collecting data from temporarily installed temperature loggers across the store. Installing
additional sensors to record occupancy related information would also be greatly beneficial. For
example, with a door sensor, SPO would have been able to track the door open/close events and the
model would have been able to take into account the effect of outside air in the store.

While this pilot site has unique characteristics, this test successfully demonstrates the feasibility
of the SPO system for similar types of buildings. Many convenience stores in operation today (around
12,000 in California alone) have similar HVAC and refrigeration systems and can be upgraded to
become a building-scale microgrid. Quick serve restaurants, hotels and grocery stores are other
possible candidates for deployment of these systems. Deploying SPO in such buildings would provide
data points regarding the portability and the scalability of the whole system and identifying another
deployment site is also a part of the future work.

6. Conclusions

This paper presents the design, implementation and preliminary test of Solar+ Optimizer (SPO),
a control software that provides demand flexibility to building-scale microgrids. The software uses
Model Predictive Control (MPC) to optimally coordinate the operation of building loads and the
distributed energy resources on site. SPO is designed to be vendor-agnostic and protocol-independent
and is built on open-source software. The software has been tested in a convenience store in northern
California with on-site solar generation, battery storage and control of HVAC and commercial
refrigeration loads and preliminary results show the ability to shed load in response to price signals
and to curtail demand, generating more than 10% savings in energy costs alone. Future work includes
more extensive testing and publishing the project as an open-source library as well as sharing the data
obtained during the project.
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