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Abstract—Modern IoT prototyping platforms fall short in
terms of energy efficiency, connectivity and software program-
ming practices. We present the design of a new hardware and
software platform that addresses these shortcomings by bringing
together Mobile, Wearable, Maker and Wireless Sensor Network
technologies to enable rapid prototyping with a high degree of
synergy and energy efficiency. This is achieved in part by lever-
aging the Memory Protection Unit on modern microcontrollers
along with a novel syscall interface to provide kernel / user
isolation and a clean concurrency model. Such a design allows a
wide range of languages to be used for application development
without significant adaptation. We demonstrate how careful
choice of application language allows the naturally asynchronous
nature of embedded programming to be expressed cleanly and
powerfully. Finally we evaluate the platform in several integrated
use cases, providing examples of the capabilities introduced by
Synergy.

I. INTRODUCTION

Significant hardware innovation has occurred recently under
the IoT banner, particularly in the Maker domain around
Arduino and mbed platforms. There has been a move to-
wards more powerful processors offering a wider array of
peripherals, with the necessary ease of use being provided by
software abstractions, rather than the intrinsic simplicity of 8-
bit processors used by earlier hobbyist prototyping platforms.
Despite this shift, however, the emphasis remains largely on
producing stand-alone devices with poor power characteristics,
weak software architecture, communication as an add-on, and
little to no concurrency. As design for the Internet of Things
takes the foreground, the question of how to resolve these
shortcomings must be addressed. This paper argues that a
solution can be found in the unification of several fields,
with their associated best practices, and we present a bottom-
up platform design that achieves this synergy, by holistic
hardware and firmware design.

The problem of energy efficiency, communication and con-
currency in embedded networked systems has long been at
the heart of wireless embedded sensor network design. Here,
important guidelines such as idle power, duty cycle and
wake-up times are well established [27][16]. The community
reached an important plateau in the 2004-8 time frame with
hardware devices stabilizing around 16-bit microcontrollers,
IEEE 802.15.4 radio modules and robust routing protocols.
The issue of connectivity was addressed by many innovations
in routing that became incorporated into an IETF standard[20],
[33]. The energy cost of communications was addressed
by idle listening mechanisms that were incorporated in the

IEEE 802.15.4E/G standards. For the most part, any problem
demanding energy efficiency resulted in a design resembling
that of the prototypical energy-efficient mote: the Mica [19].

Independently, the question of how to interface with humans
has seen an explosion of innovation with smartphones and
wearables becoming ubiquitous in consumer settings, relying
on recent improvements to Bluetooth (Bluetooth Low Energy
or Bluetooth Smart[3]) to provide a wireless peripheral link
between them.

Again, completely independently, the issue of taming large
asynchronous systems in software design has fueled innovation
in the web services arena with frameworks introducing patterns
for asynchronous programming that offer alternatives to the
classic events versus threads debate, particularly await from
c# and node.js.

After several generations, embedded 32-bit microcontrollers
recently obtained the idle power and fast wake-up character-
istics needed to unify these disparate domains, and in doing
so resolve the problems faced by modern IoT development
platforms. It is now possible to construct a highly capable
system following the best practices of the Maker domain,
while retaining a low power profile that rivals the best-in-class
of the wireless sensor networks domain. The additional com-
putational resources allow for novel software abstractions that
simplify energy efficient asynchronous program development,
and provide a unified API for both BLE and IP over 802.15.4.

A high level overview of the study is presented by Figure 1,
which also provides a framework for the contributions of the
work. At the core is a new module, Storm, that incorporates
the first generation of ARM Cortex M4 to concurrently
achieve mote-class power characteristics and modern Maker-
class computation and peripheral capabilities. Storm combines
this with a state-of-the-art LoWPAN radio and flash. Besides
processing power and storage, such modern MCUs bring
certain systems aspects of microprocessors into the embedded
domain, particularly memory protection, but in a distinct form;
for example, there is no MMU.

Drawing on these advances, we develop a true system kernel
based on TinyOS [25], with the embedded application in a
distinct protection domain, dynamically loaded independent
of the kernel, and interacting with it via syscalls. This allows
an investigation of a novel syscall interface that projects
structured event driven programming into the application tier,
while allowing tight low-level real-time processing without the
complexity and overhead of preemptive threads.
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Fig. 1: An overview of the Storm, Firestorm and connected domains of technologies

The Storm module advances the 3P’s methodology (pro-
totype, pilot, production) promoted by Dutta et al[16] with
a logically and physically coherent presentation of external
interfaces. Further, we extend the 3P’s into software by im-
plementing an embedded scripting language, Lua, in the appli-
cation tier. Embedded network applications can be prototyped
interactively in Lua then critical components migrated to C,
extending the Lua runtime. As the language runtime is built
on newlib, any libC based language can be easily ported. It
avoids the austere constraints of Mate’ like approaches[24] and
the complexity of embedded VMs[30][31]. It opens the door
to propagating mobile code capsules across the network, an
empowering capability in the IoT domain allowing scripting
of physical devices and spaces. In the context of a higher level
language with closures, we find that the await pattern can
be utilized to address longstanding issues with event-driven
execution without resorting to preemptive multithreading.

We extend the platform integration to engage active Maker
innovation communities by building a carrier, Firestorm, that
is physically and electrically compliant with Arduino shields.
These expansion boards support prototyping, but also provide
drop-in network infrastructure, such as IP border routers[33],
without requiring external Linux boxes, a system weakpoint
observed in prior WSN literature[1], [23]. Learning from WSN
platform design [27], a dedicated set of sensors (accelerom-
eter, magnetometer, temperature, thermopile, light) support
classic sensor network investigations out of the-box. To in-
tegrate the final domain – mobile and wearables – the carrier
contains a state-of-the-art BLE SoC (with an independently
programmable ARM Cortex M0) that supports a dynamically
shifting interaction model from BLE central to BLE peripheral.
The LoWPAN and the BLE modules are symmetric, so either
could be the primary orchestrator of the system; in this study
we focus on the Storm-centric perspective. We then provide

an in-depth analysis of the power consumption of the BLE
domain in comparison with 802.15.4.

Utilizing this overall system design, we evaluate Synergy
through a family of case studies. The first illustrates a cross-
network application in the Internet of Things domain involving
a smartphone interacting with a smart appliance (a fan) that
is also interacting with a remote (temperature) sensor over
UDP/IPv6/LoWPAN. The second creates a unified service
architecture that is projected simultaneously into the BLE and
IP domains, the latter engaging LoWPAN, WiFi and cellular,
as needed.

II. STORM MODULE

Off-the-shelf hardware platforms have been progressing
rapidly in several areas, but moving backwards in others.
The three major aspects of a platform are its computational
capabilities, its peripheral capabilities and its energy efficiency.
Over the past few years we have seen tremendous advances in
the the first two categories with off-the-shelf platforms such
as mbed, Arduino Zero and Raspberry Pi offering sufficient
computation and IO for most problems in the IoT design space.
Unfortunately, the third category – energy efficiency – has not
advanced. The most energy efficient platform has remained
essentially the TelosB[27], an aged WSN mote designed more
than a decade ago. Ironically, the problem of energy efficiency
is even more relevant now, with wearables being constrained
by form factor, driving battery sizes ever lower. In essence,
the gap between available development platforms, and the
requirements of production is growing.

To facilitate a study into the unification of wireless sen-
sor networks, mobile and wearable devices and the maker
space, it is necessary to reconsider the platform design in
its entirety. The lessons learned from the various fields must
be incorporated early, in the design phase. The resulting



module presented here represents an answer to the question
“how can we retain the energy efficiency of a WSN mote,
while matching the advances in computational power and
IO capabilities present in popular modern platforms?” This
section describes the design of new platform, Storm, that offers
the functionality of a high power system like mbed, while
providing the energy efficiency and connectivity of a WSN
mote.

Table I shows the important characteristics of Storm com-
pared to leading mote and maker platforms. Many other mote
platforms are omitted because their energy profiles are similar
or worse than the widely used platforms listed. Likewise,
many Maker platforms are omitted as the given platforms
are representative. The table shows that we can construct
a system that lies between the not-very-capable but energy
efficient WSN motes and the capable but energy-inefficient
modern prototyping platforms such as Arduino and mbed, a
design point that was not possible until recent MCU and SoC
generations.

A. Component selection

The selection of the components in a hardware platform
determines its dynamic range (from extremely low-power idle
mode to feature-rich full-power mode). Care must be taken in
this process as a lack of balance results in a platform of limited
use. It is this characteristic that undermines the usefulness of
platforms like mbed or Rasberry Pi, that excel at the high
end but are incapable of operating at the energy efficient end.
Similarly, there are existing WSN motes that excel at energy
efficiency but lack the computational power for innovation in
software architecture.

It is clear that high-performance platforms are trending
towards 32-bit ARM Cortex M microcontrollers, with almost
all major vendors of maker and wearable technology having
Cortex offerings. Previous low-power WSN platforms opted
for 8-bit or 16-bit processors, but this choice was not because
of intrinsic advantages, but rather the lack of sufficiently low
power 32-bit microcontrollers. This is no longer true. At the
time of initial design (late 2013), there did not exist an energy
efficient Cortex M SoC with an integrated 802.15.4 radio,
but there did exist a Cortex M4 that possessed both decent
computational power, and exceptional energy efficiency char-
acteristics. Therefore, we decided to proceed with a discrete
component based design, as all of the work built on top of it –
software programming paradigms for example – would simply
transfer over to a SoC when it became available in the future.
The resulting module consists of a microcontroller, external
flash and radio, following the pattern established by early
WSN platforms. As of 2015, there are some SoC offerings
that merit investigation, especially the Ti CC2650 which could
potentially unify 802.15.4 and BLE in a single chip. The use
of a SoC rather than discrete components is orthogonal to this
work.

The microcontroller on the Storm module is an Atmel
ATSAM4LC8CA, a 48 Mhz Cortex M4 with 512KB of flash
and 64KB of SRAM. Most importantly, it can compete with

the energy efficiency of best-in-class wireless sensor network
platforms. The release of this class of MCU heralds a new
epoch in ultra-low-power system design where the benefits of
32-bit processors with the associated increase in flash, RAM
and peripherals become relevant.

The AT86RF233 radio is an improvement of the
AT86RF230 used by many wireless sensor network platforms.
Radio chips have always been concerned with energy effi-
ciency, so the advance here lies in its ability to perform
automatic retransmission of unacknowledged packets. This
reduces whole-system energy consumption by allowing the
MCU to sleep during retransmissions, a significant savings.

The flash chip is an AT45DB641E. This series of external
flash was the first to operate over a wide voltage range from
1.7V to 3.6V. Previously, the minimum voltage of the flash
was the limiting factor in the system, preventing motes like
Telos from operating at the lower voltages supported by the
microcontroller. As illustrated by Table II and III, operating at
a lower voltage offers significant whole-system energy savings.

B. Form factor
The Storm is constructed as a small (1” by 1/2”) single-

sided solder-on-module with castellated edges. This module
contains all the difficult-to-engineer analog circuitry for the
antenna switch, and is assembled en-masse by specialized
equipment. Using the module requires no special equipment or
knowledge. Furthermore, the exported IO pins are reordered
into logical groups (with pins of the same module grouped
together) greatly simplifying carrier routing constraints.

This encapsulation approach is well motivated by [16];
separating concerns between a core module and carrier boards
allows for innovative application specific peripheral circuity
while still isolating researchers from the task of designing the
core functionality which requires deep expertise and special-
ized equipment. It also mirrors the approach of systems like
mbed and Arduino which similarly encapsulate the complexity
into pre-built module, but export IO for application-specific
circuitry.

C. Evaluation and Comparison
We briefly evaluate the Storm module with regards to

power consumption, both idle and per unit computation. Table
I shows the capabilities of Storm with regard to memory
capacity and operating conditions. Additional evaluation of
the Storm in the context of a carrier is presented below in
Section III.

Table II shows the measured idle power of the Storm
and, for comparison, the TelosB with varying supply voltages
in the lowest sleep mode that retains a running RTC with
alarm interrupts. The Telos is used as a reference because
it represents the best-published extreme on the WSN mote
energy efficiency spectrum, despite its age. As shown in Table
I, detailed idle power comparisons with modern development
platforms is meaningless. The result, (Table II) shows that
there are significant idle energy savings to be had by control-
ling the whole-system voltage, a technique that is absent in
IoT development platforms.



Platform GPIO Pr. Flash(KB) Ram(KB) Ext. Flash(Mb) Performance(DMIPS) Size (mm2) Idle current(µA)
Storm 63 512 64 64 92 416 2.3
TelosB 13 48 10 1 4.4 2040 5.1
MICAz 42 128 4 0.5 5.6 1815 15

Arduino Uno 20 32 2 0 5.6 3663 >40000
Arduino Zero 20 256 32 0 65.4 3663 >1500

mbed LPC1768 32 512 64 16 189 774 >50000

TABLE I: Critical characteristics for several common platforms compared to Storm

Voltage TelosB µA Storm µA
3.300 8.8 13.0
3.000 7.2 7.5
2.700 5.9 5.1
2.500 5.1 4.1
2.400 4.6 3.8
2.100 3.5 2.6
1.800 2.6 2.3

TABLE II: Idle power comparison between a TelosB and a Storm,
measured side by side

To observe active power characteristics, we measure the
power consumption of the device while it is computing the
sum of squares over a set of samples. Both 4Mhz and 48Mhz
configurations were tested. The results are presented in Table
III. This table illustrates that despite the higher active currents
of modern 32-bit processors, the energy per unit computation
is substantially lower than that of the Telos’ MSP430 which
possesses lower active current. Energy per unit computation
is largely insensitive to speed, and a wide range increases a
system’s capability, so long as low idle power is maintained.
However, it can be seen that the choice of linear (LDO) or
switched mode power supply (buck) for the microcontroller’s
core voltage as well as whole-system operating voltage signif-
icantly affects energy use. The choice of power supply mode
depends on usage profile, as the buck converter introduces
higher idle currents, whereas the LDO introduces higher active
currents. The expected duty cycle for a given application
must be considered at design time to determine the ideal
configuration.

It is common for Maker platforms to be designed purely
for their peak power capacity, with no regard for the idle
characteristics, as can be seen in the Arduino Zero whose
regulator alone has a quiescent current of 1.5mA, two orders of
magnitude more than the Storm’s whole-system idle current.

III. SYNERGISTIC PLATFORM - FIRESTORM

The Storm module is designed specifically to ease the effort
to create application specific carrier boards. For pilot scale or
production deployments, these typically address mechanical
and electrical requirements as well as adding sensors. Pro-
totype scales demand flexibility and rapid experimentation.
Often, the software architected during the prototype and pilot
phase changes very little in the move to production, as any
change potentially introduces bugs. As a result, it is imperative
that the mechanisms for whole-system energy efficiency are
present in the prototyping platform, so that the software can
be designed to use them.

We present Firestorm, a Storm carrier design (Figure 1 C)
that seeks to do this, through mechanisms drawn from wireless
sensor network hardware design. Firestorm is a prototyping
platform that retains the rapid development process iconified
by Arduino by leveraging the wide array of available Arduino
shields. At the same time, it seeks to bring this together
with WSNs, mobile devices, wearable devices and demanding
cyber-physical systems. Storm makes the physical design of
such a carrier relatively easy and the Arduino form factor is
spacious, so the core challenge is to accommodate the wide
variety of power requirements while retaining extreme energy
efficiency. Firestorm is partitioned into several power domains,
and power modules can be attached. It also allows the 15.4-
centric Cortex-M4 Storm module and the BLE-centric Cortex-
M0 SoC to function as peers; either processor could be the
central system orchestrator.

A. Wireless Sensor Networks

A lesson from WSNs is that possessing connectivity and
a small number of sensors out-of-the-box can accelerate
development. The power management, data transport and
aggregation code for many projects can be developed using
the default sensors and switched to application specific sensors
as they become available. Firestorm provides a suite of on-
board sensors: a Texas Instruments TMP006B ambient and
IR temperature sensor, a Freescale FXOS8700 3-axis magne-
tometer/accelerometer, and an Intersil ISL29035 light sensor.
802.15.4 connectivity is provided by the Storm module, and
an external antenna.

To obtain low average power and allow the development
of energy efficient software, fine grained power domains are
provided so that each subsystem can be duty cycled. Average
power consists of the active power, which is dominated by a
small number of high power components such as the MCUs
and the radios, and idle power which is affected by every
single active and passive component on the board.

Idle current is often overlooked in prototype and pilot
development, which complicates the migration to production,
possibly requiring a complete redesign. On the Firestorm,
the 2µA idle current of the accelerometer and the 1.5µA idle
current for the temperature sensor would be significant. To
avoid this, the sensors are powered from a separate power rail
that can be gated off to reach a lower power mode. In addition,
the USB serial circuitry is powered from the USB itself and
consumes minimal (75 nA) current when there is no USB
connection present. This gating of the sensor power supply
saves more than 4µA in idle current consumption (more than
25%, depending on the configuration).



Device Supply (V) CFG Freq (Mhz) Run time (µS) Current (mA) Energy (µJ)
TelosB 3.3 - 4 712.7 2.29 5.386
Storm 3.3 LDO 4 393.0 1.049 1.360
Storm 3.3 BUCK 4 393.5 0.501 0.651
Storm 1.8 LDO 4 393.7 0.896 0.634
Storm 3.3 LDO 48 32.8 13.625 1.479
Storm 3.3 BUCK 48 32.9 8.602 0.934
Storm 1.8 LDO 48 32.9 13.124 0.777

TABLE III: Benchmark power comparison results. The bold line indicates the anticipated common configuration

Peripheral Storm Firestorm Arduino Uno
GPIO / sync IRQ 63 42 20
USB Host 1 0 0
PWM Channels 12 12 6
USART 4 3 1
Primary SPI channels 2 2 1
ADC channels 14 7 6
I2C channels 2 + 2 1 + 1 1
Async IRQ 9 9 2
16bit PD DAC 2 2 0
10bit DAC 1 1 0
8bit parallel port 1 1 0
AES accelerator 1 1 0

TABLE IV: Storm and Firestorm peripheral and IO capabilities

These techniques are essential for producing a long-lived
battery-powered device, increasingly prevalent with the Inter-
net of Things. These methods, long present in wireless sensor
networks, have not yet found their way into modern Maker and
IoT communities. Typical Arduino devices offer no means to
gate the power to the USB subsystem and platforms like mbed
with acceptable MCU power efficiency lose those character-
istics in the whole-system design. In summary, these energy
efficiency techniques do not introduce significant cost; they
allow for gradual development of the power-aware software
that the Internet of Things demands, starting at the prototype
phase.

B. Arduino

To fully engage large Maker efforts it is necessary to retain
a degree of compatibility with technology utilized there. Thus,
the form factor of one of the most common Arduino devices,
the Uno [2], is used.

The original Arduino platform offers only a limited set of
IO and peripherals, as shown in Table IV. But, with the per-
sistence of these headers across several product generations,
hundreds of sensors, actuators and communication peripherals
are available with a well defined interface. As Table IV
shows, it is possible to advance the capabilities of the system
while maintaining pin-compatibility; Firestorm provides the
same physical layout and a superset of the pin functionalities.
Analog pins on the Arduino headers have analog capabilities
on the Firestorm, as do PWM, I2C and USART pins. An
additional 22-pin parallel port connector is added to support IO
intensive applications, such as the display used in our Personal
Environmental Control system shown top left in Figure 1 A.

Compatibility with the Arduino space imposes significant
supply voltage requirements. Several Arduino shields require
5V supplies, even though they have 3.3V compatible IO
signals. Adding a boost converter to the power supply circuit in
the Firestorm so that all shields have a 5V supply available to
them, even when run from batteries, incur the energy penalty
for the boost converter, even when no shields require that
power rail. Furthermore, this boost converter circuit cannot
be designed optimally since shields and other pluggable pe-
ripherals have diverse power requirements ranging from µA to
hundreds of mA (in the case of a WiFi or GSM shield).
By over-engineering for the maximum possible power draw,
performance is lost at lower power levels. This problem
is shared by all systems attempting to improve on energy
efficiency while maintaining backwards compatibility with
existing peripherals.

The answer to this dilemma lies in modularity. To accom-
modate highly variable power supply requirements (possibly
even varying at runtime), Firestorm provides an interface for
an application specific power supply “sub-carrier” board. This
sub-carrier interface allows a module to provide the 5V rail and
the IO voltage rail when needed, along with a communication
channel for runtime configuration. The motivation for the IO
rail, which also powers the MCU, stems from the processor
being being able to run over a voltage range of 1.8V to
3.3V, with the optimal voltage being application specific. As
shown in Table II and Table III, the idle and active power
consumption of the system drops with a decrease in voltage.
It is possible to optimise average power consumption by
switching to 3.3V only when communicating with sensors,
and running at 1.8V for the “low” parts of the duty cycle.

Figure 1 D shows a simple subcarrier that provides 400 mA
on the 5V rail. The carrier mounts on the reverse side of the
board so as not to interfere with any shield that may be affixed
to the board. In addition, it uses a through-pcb connection so
that it can be low-profile. A well designed subcarrier can sit
flush with the back of the main PCB.

C. BLE

Bluetooth Low Energy (BLE) is an asymmetric protocol that
typically provides an attribute based communication channel
between a Central and a Peripheral. There have been several
developments in using BLE technology for other transport
types, such as tunneling IPv6 [28][32] but for many users seek-
ing compatibility with existing mobile devices and wearables,
only the most widely adopted pattern is acceptable. Its wide



availability as a mobile phone peripheral warrants inclusion
in any next-generation sensor network or smart device that
interfaces with people.

BLE does not define what “low energy” must be. Devices
exist at multiple points on the power consumption spectrum.
Central roles such as mobile phones, typically consume much
more power than peripherals, but even the peripheral role
exhibits great variability. Smart watches, such as Android Wear
devices, have a battery life of around two days. The Fitbit
Force has a battery life of around 10 days. Devices such as
Tile [14] have a stated battery life of a year. This is a testament
to the versatility of BLE and to the complexity of the trade-offs
between performance and lifetime inherent in a BLE device.

In order to serve as a versatile research platform across a
wide range of applications, Firestorm is designed to operate
anywhere in this wide domain of BLE applicability. It is
suited for high-bandwidth BLE applications, such as streaming
accelerometer data from wearable sensors (e.g. [21]) to low
power BLE applications that wish to embed battery backed
tags in the environment for months or years.

Integrating BLE with WSNs, wearables and the Arduino/-
Maker space creates tensions that need to be resolved: low
power operation, asymmetric communication roles and com-
plexity. Table V illustrates the success of our design – with
the 802.15.4 radio turned off, advertising a BLE beacon with
maximum transmission power (+4 dBm, reliably detected by
a phone at more than 180 feet away) at a 200 ms interval
uses only 140 µA more than the standby current (90 µA ) on
average. With a whole system average current of 230 µA in
that configuration, a Firestorm could run from 2 AA batteries
for more than 400 days. Naturally, even longer lifetimes could
be achieved by decreasing the advertising interval.

Wearables and other existing BLE peripherals require a
device to be in central mode to interface with them. The
NRF51822 BLE used by the Firestorm is capable of operating
in either mode. In addition Nordic provides a soft-device that
allows for concurrent peripheral and central mode [12]. At
the time of writing, this capability has not been explored
in depth. We have, however, constructed a proof-of-concept
BLE advertisement-scanning mesh using early versions of the
software framework to verify functionality in both modes. We
are confident that this capability will enable new avenues of
research.

The Arduino/maker space demands ease of use. BLE is a
complex protocol, arguably far more so than IP. The process
of constructing a Generic Attribute Profile (GATT) is involved
and presents a conceptual burden to researchers. We show one
method of presenting Bluetooth to the application that reduces
this complexity in Section IV.

In summary, although BLE originated in a different space
from the Maker and WSN fields, it can be integrated cleanly
while meeting the requirements the latter spaces impose.

D. BLE/802.15.4 Evaluation

Although the platform integrates both IEEE 802.15.4 and
BLE, it allows either to be studied in isolation, due to use
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Fig. 2: Average current vs low power listening interval for Firestorm
compared to TelosB

of discrete transceivers and MCUs. We look at the power
characteristics of a beacon style application and contrast BLE
and IEEE 802.15.4. To the best of our knowledge, this is
the first such comparison in the literature, beyond preliminary
overviews, such as [29]. Figure 3c and 3a show the power
consumption of the system while advertising BLE services
at 200 ms intervals. Figure 3b shows the transmission of a
(larger) 802.15.4 packet; the Lua trace is for reference later
in the paper. Figure 2 shows the average RX current of a
Firestorm running stock UDPEcho on TinyOS, and how it
varies with listening interval.

Note how much more rapidly the BLE SoC is capable of
reaching the radio TX state (roughly 2 ms in comparison to
roughly 6ms) and how much lower the MCU power consump-
tion is. This plays a large role in BLE’s energy efficiency. The
slow-to-TX behavior on the TinyOS side seems largely due to
software engineering, as the radio itself can transition to the
TX state in 100 µs , and the transmission of the packet over
SPI would take less than 20 µs if DMA were used.

At 2.4V in the buck configuration, the total energy per
second for 802.15.4 is 550 µJ over 1 packet (and two LPL
intervals). In the same configuration, BLE uses 554 µJ over 5
advertisement groups. Each BLE advertisement group contains
20 bytes of user data sent to three channels, totalling 100
unique bytes sent over the second. The 802.15.4 packet
contains 115 bytes, roughly equivalent if the non-user data
in BLE advertisements is considered.

When connected to an Android phone that is ranging by
polling to determine the RSSI, we see a profile almost identical
to Figure 3c. The transmission events occur at 50ms intervals,
but we do not observe the high current blocks of packet-trains
or listening typical of some low power 802.15.4 MACs.

Part of the reason that IEEE 802.15.4 ended up having
comparable energy efficiency to BLE, contrary to popular
expectation, is that the benchmark of power efficiency in
the 802.15.4 literature is out of date. Figure 2 compares the
measured 802.15.4 power consumption of the Telos as the
listening interval is varied. The Firestorm whole system power
is also plotted for reference, and is significantly lower.

E. Power

There are several power rails on the Firestorm, as it has to
cater to both high functionality attached-to-USB modes of use,
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Fig. 3: Power traces contrasting BLE and 802.15.4. Normalized by transmitted information, they are roughly equivalent

as well as low power battery backed modes. The Storm module
requires only a single supply as it generates the analog supply
and core voltage internally. It can, however, generate the core
voltage either by using a low dropout linear regulator (LDO)
or a buck converter. As explored in [26], the buck converter
is more efficient if the processor is active, whereas the LDO
is more efficient if the processor is idle. For this reason, the
Firestorm allows either configuration to be chosen by adjusting
a jumper. The selection can also be made at runtime by the
power subcarrier.

By using these techniques when designing the power sup-
plty circuity, the Firestorm’s minimum idle current is 9.6 µA at
the typical 2xAA voltage of 2.4V (the Storm’s idle current at
this voltage is 3.8µA ). The NRF51822 BLE SoC datasheet
claims a 2.6µA sleep current, which brings our theoretical floor
to 6.4 µA . The remaining 3.2 µA is due to other components
in the system, such as the analog switch that isolates the USB
subsystem, and the various high-leakage logic-level-triggered
FETs used as ideal diodes and power domain gates.

Table V lists the Firestorm whole-system power consump-
tion under various conditions. Note the significant difference
between multiplexed clocks (the application using RTC de-
rived clocks) and dedicated high precision application clocks
that preclude the lowest sleep state. Also note the very
comparable whole-system power figures for BLE advertising,
and 802.15.4 beaconing. They are within 2 µA of each other
at 2.4V in the buck configuration. This table is generated by
measuring total charge over a length of time and then dividing
to get the average current, increasing the precision over direct
current measurement.

The key lesson illustrated in Table V is that with careful
system design, idle power can be kept remarkably low, even
with more capable hardware. Furthermore, the active current
is significantly higher than that of lower frequency processors
typically used in energy-constrained hardware, so it is imper-
ative that the software be programmed correctly to spend as
much time as possible in low power modes.

F. Symmetry

An interesting aspect of designing a platform that communi-
cates over BLE and 802.15.4 is that they have several disjoint
use cases. Although the Cortex M4 on the Storm is certainly
more capable than the Cortex M0 in the NRF51822, it is not
clear that one processor would always be the master. For this
reason, Firestorm was designed with symmetry of use in mind.

Firstly, the SPI interface between the Storm and the NRF
can have either chip as the master. This would allow the M0
to be running application logic, and leave the Storm in ultra
low sleep until an 802.15.4 packet needs to be sent, or records
need to be stored in flash.

Secondly, the I2C sensor bus containing the accelerometer,
magnetometer, light sensor and temperature sensor is con-
nected to both microcontrollers. This means that either can
be the master on the bus, or that the bus can be used as
an out-of-band channel for additional communication between
the processors. For example, the M0 can be the slave on the
SPI bus but a master on the I2C bus, allowing it to initiate
communication to the Storm when that is required.

This symmetry enables an exploration of the role of BLE
and 802.15.4 in a system where they coexist, as it is still a
nascent field and the use cases are still being explored.

IV. RICH EMBEDDED APPLICATION TIER

The hardware platform presented above allows the explo-
ration of novel approaches to application development that
leverage the capabilities of modern microcontrollers. An open
question is how best to create a software environment that
supports easy, rapid, energy efficient software design. With
this in mind, an obvious trade is the reintroduction of a ker-
nel / userland split offering memory protection, independent
program loading, and broader software compatibility. Previous
WSN operating systems shunned the idea of multiple stacks
for application and system code because low power MCU’s
failed to support this separation efficiently [15]. This has
changed. The introduction of a Memory Protection Unit and
dual hardware stack pointers into several of the ARM Cortex
MCUs permits full isolation with little to no runtime overhead,
and an acceptable RAM cost.



Sleep Clocks 15.4 RX 15.4 TX BLE Buck @ 3.3V Buck @ 2.4V LDO @ 3.3V LDO @ 2.4V

enabled low power

disabled disabled
disabled 26.0 µA 10.2 µA 25.6 µA 9.6 µA
standby 91 µA 90 µA 93 µA 84 µA

advertising 235 µA 231 µA 236 µA 230 µA

512ms LPL
1 /sec disabled 197 µA 229 µA 242 µA 257 µA

disabled

advertising

320 µA 341 µA 346 µA 354 µA

1 /sec

389 µA 420 µA 429 µA 430 µA

always on
13.1 mA 12.8 mA 13.0 mA 12.7 mA

dedicated 17.9 mA 19.3 mA 20.6 mA 20.5 mA
disabled 19.8 mA 21.9 mA 23.6 mA 23.6 mA

TABLE V: Firestorm power consumption

An isolated application tier with its own dedicated mem-
ory and stack offers several advantages. Applications can
be efficiently preempted to handle the asynchronous tasks
posted by kernel interrupts without any additional code in
the application. Hardware has always supported preemption
for interrupt handling, but prioritising the “bottom” ends of
interrupt handlers over application logic has required the
application to “play along” [18][15].

The arguably more important advantage is that the appli-
cation need not be designed with the kernel in mind at all,
beyond a small well-defined Application Binary Interface in
the form of a syscall. We can experiment with different lan-
guages, libraries and programming paradigms for application
design without re-engineering system services like the network
and hardware abstraction layers.

A. Design of a syscall interface

The design of the syscall plays an important role in de-
termining the possible execution modes of the application. If
the ABI were POSIX-like, e.g. with the socket interface being
read() and write() blocking calls, the kernel could enter sleep
state between an invocation and when data is available, saving
power. It would, however, limit the ability of the application to
implement concurrent logic, sans threads. If a more advanced
POSIX-like interface were used, such as select() or epoll(), it
would allow more traditional asynchronous programming as
found in performant C programs. This comes at the cost of
complexity and poor software design as it breaks modularity,
requiring a central piece of code to listen for and distribute
events.

Our syscall interface overcomes these limitations by dis-
tributing events from the kernel directly to the handling
logic in the application, facilitating good software design
by reducing artificial dependencies between components in
the application. A pointer to the handler function and any
necessary state is passed with the syscall invocation. Upon
completion the kernel triggers the event. For example, an I2C
transaction syscall accepts a pointer to the handler that will
be invoked when the I/O transaction is complete.

This improves on the split-phase model found in TinyOS, as
every invocation of the syscall can accept a unique handler, de-
termined at runtime. The difference is evident when observing
a common pattern in TinyOS: complex switch statements in
the completion handler that are used to determine the next state
(e.g. Figure 5). As custom data cannot be passed from the point
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Fig. 4: Execution model of an application that enters fully event based
execution

of invocation to the completion handler in TinyOS, global state
must be used, and is a source of race-condition bugs. With
the syscall interface we have designed, data from the point of
invocation can be passed directly to the handler. This emulates
handler closures in languages that do not support them.

The syscall event handlers are executed cooperatively by
the application; they do not interrupt the running application.
As shown in Figure 4, a syscall is invoked with the event
handler pointer. Later an event is dispatched by executing the
wait_for_event(), or check_for_event() syscall.
The wait version will sleep if no events are available whereas
the check version allows the program to continue execution
if no events are queued. In the bottom half of the figure, the
application returns from main() and enters a fully event based
mode where userland execution only occurs in response to an
event.

The cooperative, run-to-completion model of callback ex-
ecution has trade-offs, all of which exist in the context of
ECMAScript [6], node.js [11] and other run-to-completion
single-threaded execution environments. The primary advan-
tage is simplicity, as it is difficult to introduce a race condition.
The primary disadvantage is jitter and latency in the time it
takes for an event to be delivered to a handler. Fortunately,
the increase in processor speeds has rendered most latency
demands easy to meet as the physical-event-based latency
constraints have not gotten tighter whereas processor speeds



Driver Example syscalls
Timer start_periodic, get_now
GPIO set_mode, enable_irq
SysInfo get_MAC, get_nodeid
UDP open_socket, sendto
Routing add_route, lookup_route
BLE add_service, add_characteristic
AES encrypt, decrypt
I2C read, write
Flash read, write

TABLE VI: Currently implemented drivers

continue to increase. For the rare case that this jitter is
unacceptable (for some peripheral emulation for example) the
logic can be moved into the kernel for stricter guarantees.

This syscall interface, which carries the asynchronous event-
based nature of the kernel through to the application, im-
proving energy efficiency, is strictly more capable than the
blocking POSIX-like interface. Specifically, if an application
calls wait_for_event() directly after every syscall invo-
cation, it is functionally equivalent to the blocking version.
Such a capability means that applications written in Arduino-
style blocking code can still be run, and modified gradually
to more powerful execution models.

Any language with a compiler that emits ARM Thumb code
can run on top of the kernel and interface with syscalls with
no hardware specific adaptations. This is because a syscall
follows the standard ARM calling convention [17]. As an
example, this means that advanced new system languages such
as Rust [13] can be used, a topic of ongoing research.

B. Driver design

Apart from the core syscalls offered by the main kernel,
such as waiting for an event, most syscalls are implemented
as drivers – extensions to the kernel that are wired in as
standard TinyOS components. This preserves the modularity
of the kernel, so that different platforms can contain platform
specific logic. We have implemented nine drivers, listed in
Table VI. A driver does not take long to write as it is a wrapper
around existing TinyOS components.

Although synchronous syscalls (with no callback) have a
common behaviour, asynchronous syscalls may have driver-
specific logic governing how they are queued and dispatched.
By making the queues driver specific, it is possible for
different drivers to offer different service agreements on the
events, such as “every event has a reserved spot in the queue”
which is appropriate for standard asynchronous operations like
an I2C transaction, or “best effort with queue depth N” which
is appropriate for unbounded operations, such as listening on
a socket.

C. LibC support

We implement a full LibC over this syscall interface by
adapting newlib [10]. The implications of this are significant:
common off-the-shelf embedded applications can be used,
without needing to port their hardware abstraction layers to
the platform. They can be dropped in, complete with their

build environment and the versions of libraries that they ship,
compiled for ARM Thumb. An example is the eLua runtime
discussed below.

Adapting a third party application to run is simple: remove
all the hardware specific code, and write a few LibC support
stubs (40 lines of code for newlib based applications). From
there, the syscall interfaces can be added: a single line C
function per syscall. As this code does not change significantly
from application to application, it can be copied verbatim.
Applications need not be simple C programs, they can be
as complex as full language interpreters, as evidenced by the
trivial port of Lua.

D. Lua

Lua [22] is a simple interpreted dynamic language intended
for embedding into other applications. It offers closures and
coroutines among its many features. It is built entirely on
LibC, making it lightweight and portable. The eLua project [7]
has combined the Lua runtime with newlib [10] – a popular
embedded LibC implementation – and a hardware abstraction
layer to allow embedded development.

By writing a few stubs for newlib such as _sbrk, _write
and _read, we were able to boot eLua into an interactive
prompt with only 40 lines of code. This is on a chip not
supported by eLua previously. We are confident that Lua was
not a special case; projects such as MicroPython [9] would be
equally amenable to running with this syscall interface.

Although Lua was used, any other high level language inter-
preted language with closures, coroutines and clean interfaces
to native code can be used to implement the functionality
described below.

E. CORD and Await

A central question we wanted to explore was how the
addition of closures in the application tier might simplify
writing asynchronous embedded applications. Event handlers
can be written in the context of the syscall invocation and can
access variables in that lexical scope. While this is a great
improvement over the scattered handlers found in TinyOS, it
still leads to deeply nested callbacks when there are sequences
of asynchronous operations, a scenario colloquially known as
callback hell [5]. This is a problem for memory use – every
callback has access to every variable in its enclosing scope,
so the garbage collector cannot free anything until the entire
sequence is complete. More significantly, it is a problem for
program legibility and complexity.

Alternatively all callbacks could be used synchronously,
using the wait-after-syscall method described above. This
solves both the legibility and memory problems, producing
code that looks like the sequential code typified by Arduino.
The problem with this approach is that there can only be one
logical thread of execution.

A better approach is the introduction of a mini-scheduler,
written in Lua, that uses coroutines to allow concurrent green
threads. CORoutine Daemon, or CORD, allows multiple log-
ical fibers of execution to run in parallel. With this we can



construct a method that converts any asynchronous function
into a synchronous one by yielding the coroutine until the
callback is invoked. Inspired by the await keyword from
C# [4], this method receives a function and the parameters
with which to invoke it, sans the callback. It then invokes the
function with its own callback that receives the parameters
and stores them to be passed as return values from the await
invocation via Lua’s coroutine.resume(). The entire
CORD file is only 78 lines long, including await and the native
support that will be described later.

The significance of await() and coroutines is best illus-
trated by example (Figure 5). With await (Listing 1), functions
can be written that encapsulate asynchronous operations and
make the interface look synchronous. A closure based model
(Listing 2) also allows encapsulating functions to be written,
but sequences of asynchronous functions are chained together
by nesting. Finally, standard C or nesC (Listing 3) code in
the absence of closures leads to highly scattered program
logic with an explicit state machine controlling the progression
through the asynchronous operations.

F. 3P’s for programming

The use of an interpreted language as an application tier
brings the concept of 3P’s to software development. Lua code
can be prototyped interactively via a shell, or pushed in line
by line over the network. Individual functions or variables can
be tweaked on a running system via encrypted active network
capsules. Programs of moderate size (hundreds of lines) can
be developed entirely in Lua and pushed into the network
to enable dynamic coordination between collections of IoT
devices. The presence of a hardware AES accelerator on the
MCU allows for rapid (0.68 cycles per byte) encryption and
decryption so that secure code dissemination now does not
incur a significant energy cost. Using an interpreter in the
application tier does not cost much, the dashed line in Figure
3b shows how insignificant is the overhead of sending packets
from Lua compared to from the kernel.

As pieces of functionality stabilize and are moved to the
pilot stage, they can be migrated into C modules that interface
with Lua code. This follows the same pattern as C extensions
to Lua on PC. As Lua was designed to be embedded into other
applications, the process is straightforward.

The 3P’s software pattern not only extends to application
logic, but also to driver design. It is possible to interactively
develop a new hardware driver in Lua using only a few basic
C functions (peek and poke) and then migrate that to a
Lua C implementation for pilot use, and a kernel driver for
production use. This is because the kernel can configure the
MPU to allow blocks of system memory to be accessible to
the application tier at a granularity of individual peripherals.
We have found this pattern to be useful in an instructive
setting where students learned to configure and control an
ADC peripheral from scratch in a single lab, without needing
to understand the mechanisms of TinyOS and the kernel. As
they progressed, more and more functionality was migrated

Fig. 6: 802.15.4 and BLE connected prototype smart appliance

from Lua to C, allowing comprehension of basic principles to
preface comprehension of optimal implementation.

V. EVALUATION AND CASE STUDIES

We had the opportunity to use this platform to teach an
IoT class of roughly twenty students. They were able to
rapidly construct applications over ensembles of smart devices
with ad-hoc coordination. These ensembles included a smart
storybook that discovered nearby devices such as fans, heaters
and lights that provided “feel effect” of the environment
described in the story, or a meal coordinator that scheduled
kitchen appliances to ensure that toast was ready at the same
time as the coffee and bacon. Another yielded a standalone
LAN-LoWPAN border router with a BLE console and active
network style lua capsules for debugging. There are too many
to mention, but we present two examples that would not have
been possible without the innovations shown in this paper.

A. Cross network application

A simple demonstration of a rapidly assembled cross-
network application developed using this synergy is a smart
appliance interacting with humans via a mobile phone, and
with the environment via distributed sensors communicating
over 802.15.4.

This system consists of an off-the-shelf fan that was dis-
assembled, two relays inserted to adjust the fan speed and
reassembled. The Grove relays [8] allow for plug-and-play
assembly, typical of Maker prototyping tools. This fan exports
control via a Bluetooth attribute to an Android app. Additional
Firestorms deployed near the fan are discovered and instructed
to send temperature readings from their onboard sensors via
802.15.4. The fan can then use this information to make
additional control decisions and present it to the user app.

This application is not ambitious, but the entire appliance
was disassembled and reassembled in four hours, of which
more than three hours were spent on the Android app. The
code for the fan is only 37 lines long. The alacrity with which
such a cross-network application – involving two network
stacks, and GPIO – can be assembled, is empowering.

B. An approachable symmetric service infrastructure

The previous example of a rapidly assembled smart fan
shows that a cross network application is easy to develop



Listing (1) Lua with CORD
function sleep (t)

cord.await(storm.os.invokeLater,
t∗storm.os.MILLISECOND)

end
function write i2c reg(addr, val)

cord.await(storm.i2c.write, ...)
cord.await(storm.i2c.write, ...)

end

write i2c reg(PAR A, VAL A)
sleep(200)
write i2c reg(PAR B, VAL B)
sleep(50)
...

Listing (2) Lua Async
function sleep(t, cb)

storm.os.invokeLater(
t∗storm.os.MILLISECOND, cb)

end
function write i2c reg(addr, val, cb)

storm.i2c.write(..., function()
storm.i2c.write(..., cb)

end)
end
write i2c reg(PAR A, VAL A, function()

sleep(200, function()
write i2c reg(PAR B, VAL B, function()

sleep(50, function()
...

...
...

end)
end)

end)
end)

Listing (3) nesC
task next state() {

switch(state)
case par a write addr:

call I2C.write(...);
state = par a write val;
break;

case par a write val:
call Timer.startOneShot(200)
state = par b write addr;
break;

case par b write addr:
call I2C.write(...);
state = par b write val;
break;

case par b write val:
call Timer.startOneShot(50);
state = ...

}
event void I2C.writeDone(...) {

post next state();
}
event void Timer.fired() {

post next state()
}

Fig. 5: I2C Display initialisation under different programming models

on this platform, but there is still a disparity between the
functionality offered over Bluetooth and the functionality
offered over 802.15.4. It is possible to engineer a specific
application such that this is not the case, but it would be nice
to abstract away this conceptual burden.

To this end we created a service discovery and utilisa-
tion framework with the explicit goal of unifying BLE and
802.15.4. This goal presents some challenges: firstly, BLE is
primarily attribute based, not stream based. This means that
either a stream type overlay must be built on top of BLE, or
an attribute type overlay on top of IP. Secondly, in BLE, the
size of each attribute is limited to 20 bytes if one is trying to
avoid complexity on the central role. This limits the degree
to which one can advertise rich metadata to make services
self-describing.

Rather than trying to artificially elevate BLE to offer stream
transport – which would complicate the code running on
the central role – we opted for creating a set of somewhat
restrictive operations on IP that allows parity between the two
protocols. This reduces overall complexity significantly.

Figure 7 shows the architecture of this system. BLE discov-
ery of services via advertisements is replicated as discovery
via link-local multicast in 802.15.4. The GATT obtained via
BLE service discovery is mapped onto a table of UUIDs sent
as part of the advertisement payload in 802.15.4.

Additional information to consume the service and translate
data from opaque blobs, to machine readable structs or human
readable values is encapsulated in a manifest located on
GitHub. This manifest also augments BLE, as the protocol
is lacking self-description of services. On the phone side, it is
accessed at runtime via the internet, whereas for embedded de-
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Fig. 7: The SVCD framework

vices that lack the variability introduced by human interaction,
the necessary manifest entries are resolved at build time.

Using this system, services are written with one interface,
that is translated to both media. Client interactions via BLE
or IP appear identical. This also allows seamless transition
between the two, where a phone might discover and initiate
relationships between devices over BLE, then drop an agent to
the cloud or a local device to persist that relationship over IP
when the phone leaves the space. In an instructional setting,
students constructed numerous applications as ensembles of
such services.

VI. SUMMARY

The platforms that are popular for IoT prototyping and pilot
testing have advanced in processing capabilities but remain



inadequate in terms of energy efficiency, software architecture
and connectivity. Individually, these challenges have been
overcome in other domains. By bringing together wireless
sensor networks, maker, mobile and wearable technology it
is possible to design a platform that retains the best qualities
of modern IoT development systems, while addressing the
outstanding problems.

Exemplifying this approach, this paper presents Storm, a
solder-on module that operates with an energy profile of
a best-in-class mote, and the computational and peripheral
capabilities of modern maker platforms. It is designed to
allow a clear path from prototype, to pilot, to production.
Leveraging this, we also present a synergistic carrier platform,
Firestorm, that balances the best characteristics of wireless
sensor networks, mobile devices, wearables and maker tech-
nology. This platform allows in-depth analysis of low power
BLE and 802.15.4 techniques while also providing the ideal
tool for direct comparison. In addition, Firestorm serves as a
design template for future energy efficient IoT development
platforms. Using this platform, we create an isolated applica-
tion tier – implemented with the MPU – showing that it offers
accelerated application development and easy adoption of
existing embedded frameworks and interpreted languages. We
show how one such language – Lua – can elegantly encapsu-
late the asynchronous syscall interface and reduce application
complexity by allowing for pseudo-synchronous programming
with coroutines. It also allows for the 3P’s model to be applied
to software by providing easy prototyping combined with a
clear path to production. Finally we showed the power of the
platform and application tier together – Synergy – in rapidly
prototyping a smart appliance, and developing a symmetric
service oriented architecture that unifies BLE and 802.15.4;
this allows for agile distributed embedded system composition.

By adopting these whole-system synergistic design princi-
ples, we can finally move away from the ubiquitous yet con-
strained mobile-app-and-wearable incarnation of the Internet
of Things to highly interconnected ensembles of long-lived
devices, an engine for innovation.
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