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Abstract

Authorization is a crucial security component of many
distributed systems handling sensitive data or actions, in-
cluding IoT systems. We present the design of a fully de-
centralized authorization system, WAVE, that operates at
a global scale providing fine-grained permissions, non-
interactive delegation and proofs of permission that can
be efficiently verified, while still supporting revocation.
Using smart contracts on a public blockchain, it allows
rich and complex policies to be expressed and is resistant
to DoS attacks without relying on any central trusted par-
ties. We also present a novel mechanism for protecting
the secrecy of resources on the public blockchain, with-
out out-of-band channels or interaction between granters,
provers or verifiers. We implemented WAVE, which has
now been running for over 500 days. We show that
WAVE is efficient enough to support city-scale federation
with millions of participants and permission policies.

1 Introduction

Authorization is an important security component of
many distributed systems handling sensitive data or ac-
tions, whether these systems are Internet of Things
(IoT) [26], Industrial Internet [27], SmartGrid [28],
SmartBuildings [48], or SmartCities [18, 60]. A key as-
pect of these systems is that authorization permissions
might span different administrative domains, each with
its own internal structure [16, 19, 47].

Unfortunately, most existing authorization sys-
tems [61, 40, 45, 44, 51] rely on a trusted central author-
ity. This is, for example, the case for many communica-
tion platforms in the IoT space (both publish-subscribe
syndication and point-to-point) [6, 46, 34, 51, 38, 4, 51].
However, if an attacker compromises this party, they
can subvert the authorization policy of the entire sys-
tem. The damage of unauthorized actions represents a
fundamental threat in such systems [62, 57, 22, 36].

We present WAVE (Wide Area Verified Exchange), a
novel authorization system spanning different adminis-
trative domains without relying on a central authority.
Each party can express fine-grained trust into another
party without implicitly having to trust a central third

party. WAVE can express rich access patterns such as
Role Based Access Control (RBAC) and groups. In tradi-
tional systems, the central party, when uncompromised,
ensures availability, consistency, durability, and enforce-
ment of authorization policies. In WAVE, this party is
replaced with a blockchain, Ethereum [58, 12], and op-
erations with smart contracts on blockchains [52]; this
offers a distributed global, durable ledger of transactions.

The idea of using blockchains for various tasks in IoT
systems has already been proposed [49, 15, 42, 3, 2, 50].
However, making this approach work for decentralized
authorization in an expressive and efficient way fit for
the IoT setting requires overcoming a set of challenges,
which we now explain.

First, these prior systems place user or device data
onto the blockchain [49, 15, 42, 3, 2, 50]. Apply-
ing this strategy to IoT systems results in critical path
operations needing to perform blockchain operations,
which is inefficient and expensive. Instead, WAVE
uses the blockchain only for storing permissions (essen-
tially “metadata”) and not data, and does not access the
blockchain upon critical data path operations, resulting
in a cheaper and more efficient system.

Second, the IoT setting poses a set of new challenges:
out-of-order delegations and non-interactivity. Consider,
for example, that Bob grants his assistant access to ev-
erything he has access to in the “work” domain. In other
words, he granted access to the URI “work/*”. Later,
an administrator installs a new lock in Bob’s office and
gives Bob access to it. The access from the admin to
the assistant has thus been given out of order. Neverthe-
less, the assistant should get immediate access. More-
over, Bob might not be online (“non-interactive”) at the
time when the admin gave him this permission so he can-
not help transfer this permission to the assistant either.
WAVE addresses this problem by embedding in smart
contracts cryptographically-enforced delegations, called
Delegations of Trust (DoTs). All the DoTs together form
a global permission graph which spans different trust do-
mains (such as “work” or “home”). A proof of autho-
rization is a chain of DoTs. WAVE enables the relevant
parties to look up such proofs of delegation efficiently.



Third, the global visibility of the blockchain poses
privacy concerns. For example if an administrator del-
egates to Alice access to the resource URI “Build-
ingNorthGate/Floor9/Room25”, an attacker essentially
learns where Alice works. To protect such information
on the public blockchain, a natural idea is to encrypt
this information, but with whose key? Due to the out-
of-order and non-interactivity properties above, one does
not know ahead of time who will have access to the del-
egation. In fact, standard public-key encryption does not
suffice here; we go through this exercise in §7.

Instead, we present a novel use of Identity-Based En-
cryption (IBE) in this setting. IBE enables a party to en-
crypt a message using a global public key and the identity
of the receiver instead of that receiver’s public key. How-
ever, to decrypt, the receiver must be granted a secret key
for his identity by a global trusted entity. In WAVE, we
instantiate one IBE scheme per user. Each user has a sep-
arate identity within a different administrative domain,
called a namespace, such as “home” or “work”. We en-
crypt the content of DoTs using the public IBE key of the
receiving user and as identity we use the namespace, thus
hiding the details of the delegation. We call the resulting
DoT, a protected DoT or PDoT. Each PDoT will con-
tain keys that enable the recipient to recursively decrypt
PDoTs of interest on the permission graph.

Finally, by leveraging tight coupling between this au-
thorization design and a publish-subscribe syndication
system, we construct a syndication mechanism with es-
pecially useful properties in the context of IoT. Con-
cretely, we present a publish/subscribe syndication tier
that offers strong Denial Of Service resistance, maintains
the decentralized and authority-free management prop-
erties present in the authorization tier, and avoids intro-
ducing implicit reliance on central authorities, such as
DNS or TLS Certificate Authorities. This syndication
tier does not require trusting the infrastructure that re-
lays messages, drastically narrowing the attack surface
in comparison to popular publish/subscribe systems like
MQTT [6] or RabbitMQ.

We have implemented WAVE and evaluated it exten-
sively via a set of microbenchmarks, a private blockchain
fork, and a city-scale emulation to demonstrate its prac-
ticality. WAVE is open-source [5] and has been running
for more than 500 days, with more than 150 IoT devices
spread across our campus and homes (including ther-
mostats, wireless sensors and Raspberry Pis), handling
thousands of resources. Our private Ethereum chain is
more than a year old and handles millions of emulated
participants economically — WAVE can also be deployed
on the main chain. This experience allowed us to tune
the design of WAVE as well as identify and report issues
within Ethereum, some of which have been fixed.

2 System Setup

We consider a global IoT network consisting of heteroge-
nous devices and services at the scale of homes, build-
ings and cities. Devices could be thermostats, smart-
locks, meters, switches, appliances, facilities, and others.
Services include building controllers, city-scale electric
management, and so on. Users might have smart phones,
laptops, home monitors, or other devices with which they
configure permissions and interact.

Designing a system for the IoT setting is challenging

because this setup poses certain constraints.
C1: Heterogeneity and interaction across trust do-
mains. There is a plethora of devices and functions they
perform, some crossing trust domains. For example, Al-
ice can have certain permissions in the context of her of-
fice and other permissions in the context of her home.
She might be able to control the lights in a room, but not
to unlock that room.

The following two constraints seem to be natural re-
quirements in an IoT system, yet enforcing them cryp-
tographically at the same time is quite challenging and
required new techniques in WAVE.

C2: Non-interactivity. IoT devices are intermittently
connected. Hence, when granting access to an entity, we
should not expect that the entity is online. When the en-
tity comes online, it should be able to exercise its access
without further interaction.

C3: Out-of-order delegation. Granting access along
a chain of delegations might not happen in the order of
the chain. For example, consider that Bob is giving an
assistant access to everything work-related. Later, the
building admin gives access to Bob to a new thermostat.
The assistant should get access immediately to the ther-
mostat. Bob essentially gave access to the thermostat
before he had access to it. When combined with non-
interactivity, the assistant must gain access to the ther-
mostat without Bob coming online to help.

C4: Constrained resources. Many IoT devices have
constrained computing, storage and energy resources.

While handling these constraints in a practical way,
WAVE must also achieve these goals:

Goal 1) WAVE must provide an integrated way to express
authorization relations across trust domains and appli-
cations. Application-specific means of expressing au-
thorization are burdensome for the user, error-prone and
make deploying applications across trust domains harder.

Goal 2) WAVE must not rely on a central point of trust.
The IoT network can cross administrative domains with
devices and services persisting beyond periods of owner-
ship or vendor lifespan. No party can be trusted by the
entire world with authentication, and any central party
represents a point of attack.

Goal 3) The system should provide protection against
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Figure 1: Overview of WAVE’s authorization layer, annotated
with an example explained in §3.1.

DDoS attacks.  This is particularly important in light
of recent high-impact attacks [41].

Goal 4) The system should minimize privacy leakage.
With a global network, the attacker has the ability to ob-
serve actions in the network and infer private informa-
tion. While removing all sources of leakage in IoT is a
vastly unsolved question, one should attempt to protect
the more sensitive pieces of information, such as mes-
sage streams and resource hierarchies.

3 WAVE Conceptual Design

WAVE consists of three layers: an authorization layer
which allows expression and evaluation of security poli-
cies, a syndication layer which provides publish/sub-
scribe on resources and a overlay layer consisting of
WAVE services, devices, servers and the underlying
blockchain.

3.1 Authorization Layer

WAVE captures who and what has access to what using
the following concepts: namespaces, resources, entities,
and DoTs. Entities and DoTs form a permission graph.

Entity: An entity is the unit of access control for autho-
rization. An entity is like a username or a role, except
that a username/role exists only within a single domain,
whereas an entity is global. Anything that grants or re-
ceives permissions is an entity and any entity can dele-
gate permissions on its own without communicating with
any other party. Anyone can create an entity.

As a running example, Alice, Bob, nanny, and admin
are entities, as are the thermostat, the energy manage-
ment service and the components of the infrastructure it-
self. An entity is a public-key pair (E;,E, ), identified
by its public key E .

As it is difficult for humans to work with such keys,
WAVE provides aliases, globally unique immutable hu-
man readable equivalents of a public key. For example,
Alice’s E ; has alias Alice.

Namespace: A namespace is a domain containing a hi-
erarchy of resources, e.g., Alice’s home is represented

by a namespace with alias AliceHome. A resource in
this hierarchy can be referenced via a URI. Alice’s home
hierarchy in Fig. 1 corresponds to a tree with two sub-
trees: one for heating /cooling, including the thermostat,
and one for security, including the smart lock. Each of
these has child resources: ‘stats’ for sensor readings and
‘cmd’ for issuing commands (e.g., unlock). The tem-
perature from the thermostat is at BW: //AliceHome/
tstat/stats/temp.

In traditional systems, a pre-existing “root” of permis-
sions, such as the administrator of the authorizing server
delegates permissions within and across namespaces. In
WAVE there is no such central authority, so the entity
that creates a namespace is fully authorized for all oper-
ations on all resources within that namespace. The re-
source URIs within a namespace begins with the E of
the namespace entity (the root of the resource tree).

Delegation of Trust or DoT: Every other entity in-
teracting with resources within a namespace must re-
ceive permission from the namespace entity either di-
rectly or indirectly. For instance, AliceHome is the
authority for AliceHome/«, and ElectricUtility is for
ElectricUtility/*. As Alice owns the home, the en-
tity AliceHome grants all permissions to Alice.

WAVE enables distributing trust across namespaces.
While Alice can access everything in her house, she can-
not access anything in Bob’s house, unless Bob gives her
permission. Alice can delegate permissions for lock to
Bob while he is visiting without involving the security
system vendor and she can limit Bob from making fur-
ther delegations.

A DoT is an edge from an entity to another entity, del-
egating some permission on a resource URI:

DoT = (E ‘{;(rom7 E!? 'URI,, Permissions, Metadata),

where the metadata is of the form (TTL, expiry time, a
list of Ev’,‘é"”k”>. The TTL allows a granter to limit further
delegation. The E™¢°k" may revoke this delegation, and
SO can Eﬁ;mm, Permissions in WAVE can express popu-
lar patterns such as Role Based Access Control (RBAC).
To achieve this, additional entities are used to represent
roles, permissions granted to that entity give permission
to the role and a grant from the entity represents the
ability to assume a role. To actually assume a role, the
proving entity simply ensures all DoT chains used pass
through the role entity. The permissions can also be sim-
pler, such as “publish” and “subscribe” as in syndication
systems. The DoT is accompanied by a signature using
the secret key corresponding to E{k’ ™ on these entire con-
tents, attesting that indeed E-Vf,:‘”" created this DoT.

As Fig. 1 shows, each namespace has a resource tree,
and there is one global permission graph. Entities are



global, not tied to any namespace; and the edges be-
tween them represent DoTs. Each edge refers to re-
sources within one namespace, but there can be multiple
edges between the same two entities. For example, the
entity Alice has some permissions in her home, and a
different set of permissions at her work.

The fundamental property of WAVE is its verification
of trust. An entity E//*"" that seeks to prove it has per-
missions on a resource must present a proof of autho-
rization. The proof is constructed by finding a valid path
in the DoT graph from the E);""“"*“ of the resource to
the E”". The prover can construct such a proof au-
tonomously, without communication with any of the en-
tities involved. The proof is sent along with the details of
the interaction (e.g., an RPC invocation) and recipients
can efficiently verify it, also non-interactively.

A unique property of the graph is that permissions can
be granted out of order, a property important for IoT
systems as described in §2. An entity Ej can create a
DoT giving permissions to an entity EY before E4 has
itself received permissions. The DoT will only become
useful to EY later when E¢ receives permissions. This
ability allows revocations or key replacement to be done
with minimal fuss, as downstream permissions can be
‘repaired’ by granting a single replacement DoT rather
than having to re-issue all delegated permissions. It is
also useful in device commissioning as it allows permis-
sion granting to occur in the order that suits deployment,
(which is often deploying first and granting later) rather
than dictating total ordering.

3.2 Syndication Layer

WAVE’s authorization layer could be integrated with dif-
ferent syndication layers. Here, we present an example
of a publish/subscribe syndication tier, which are com-
mon in IoT systems. Our contribution here is mainly the
integration with the authorization layer, an offspring of
which is resilience to DoS attacks.

In this syndication tier, entities subscribe to re-
sources in the URI tree: either to a specific resource
or to a subtree in the URI tree. An entity pub-
lishes to a specific URI. For example, an app on Al-
ice’s phone might subscribe to resources Bw://[..]1/
tstat/stat/» whereas the physical thermostat sub-
scribes to BW://[..]/tstat/cmd; when it receives a
command, it performs it.

Subscribe permission means that the receiver can re-
ceive a stream of messages published to a resource. Pub-
lish permission means that the entity may publish mes-
sages to the resource. For instance, the DoT with permis-
sion ‘publish’ for Bw://[..]tstat/cmd/setpoint
enables setting the heating setpoint temperature.

loT devices in Alice
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= 4@\ /
- Alice’s nanny
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loT devices in
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Figure 2: Example of interactions in WAVE’s overlay layer.
The example considers a building. The top refers to Alice’s
apartment and the bottom to the energy network in the build-
ing. Arrows indicate pub/sub interactions; lines between IoT
devices and drivers or agents indicate a secure channel result-
ing from an initial pairing.

3.3 Overlay Layer

Fig. 2 illustrates the WAVE overlay comprised of agents
and routers. Agents are embedded in devices, gateways,
servers, or others, communicating over the WAVE proto-
col with routers to form the syndication overlay. In Fig. 2
the smart lock agent is embedded in the device, while that
for the (legacy) smart thermostat resides as a proxy on
an embedded computer in Alice’s home, hosting a driver
with a secure connection to the device. Agents for the
electric meters might be in the device or in the utility
cloud with a secure link. The Agent holds the E, for the
device it represents. (Such proxy Agents typically run in
a secure execution container, also represented by an E;
and using WAVE authentication.)

Syndication through a namespace is enabled by bind-
ing the E} to a designated router. A designated router
is a node in the WAVE overlay (with a routable IP ad-
dress) that offers to route the namespace and has its offer
accepted by the E7}. The designated router takes respon-
sibility for forwarding and persisting messages. Agents
and routers interact with the underlying blockchain (e.g.,
Ethereum) through smart contracts to durably form enti-
ties, aliases, namespaces, and delegations of trust among
entities on resources in namespaces, as explained in §5.

When an entity interacts with a syndication resource
via its agent, the agent will form the authorization proof
and attach it to a message. The router will verify the
proof, dropping the message if it is invalid. The proof is
a chain of valid signatures. This prevents unauthorized
messages from appearing at subscribers. The subscriber
also performs the canonical verification of the proof, so
the router is not trusted (and cannot forge messages), but
in the case that the router is honest, no bad application-
layer traffic appears at the (possibly constrained) end de-
vice, simplifying firewall policy and improving DoS re-
silience. The router also performs revocation. It watches



for revoked DoTs and no longer considers a proof rely-
ing on them as valid. The same mechanism applies to
protected DoTs (explained in §7) because the signatures
in the proof are provided in the clear after decryption.

4 Threat Model and Security Guarantees

We assume that the blockchain is not compromised
and that each agent and router gets to see the entire
blockchain or is aware that they are partitioned. This
property exists in Ethereum in the absence of majority
hashpower attacks. An entity or router is compromised
if an attacker can see any of its secrets or affect the com-
putation it runs in any way. All devices, servers and
users (hence agents and routers) could be corrupted or
malicious. They may attempt to obtain permissions they
are not entitled to. An entity has legitimate access to
a resource if it is granted access to that resource via a
valid chain of delegations from the authority entity of the
namespace containing that resource.

Authorization guarantees. The guarantee of WAVE is:
for every resource, if an attacker is not one of the entities
who were legitimately given access to that resource and
the attacker did not compromise any of these entities with
access, the attacker cannot form a proof of authorization
to that resource.

For syndication, these guarantees hold even if the
routers are compromised. If the router gets compro-
mised, the router might send incorrect messages to sub-
scribers to a namespace. However, WAVE ensures those
subscribers will detect that the messages are unautho-
rized and will discard them at the agent.

DDoS protection. Assuming the designated router for
a namespace is not compromised, WAVE guarantees that
end hosts only receive authorized traffic. Further, the rate
of creation of malicious entities, DoTs and other WAVE
objects is limited because WAVE imposes time and cost
on these.

Privacy guarantees. All information placed on the
blockchain is public. To protect certain sensitive in-
formation, WAVE encrypts it before placing it on the
blockchain. We believe WAVE makes a significant step
towards protecting sensitive data. At the same time, it
should be noted that privacy in blockchains and privacy
in IoT systems in general is a widely unsolved problem
(not particular to WAVE), and WAVE does not aim to
solve all of these issues.

WAVE’s PDoTs mechanism (§7) places encrypted data
in the blockchain so only a small class of permitted en-
tities (described in §7) can decrypt it. The URI is par-
ticularly important to hide; for example, the URI “build-
ing X, floor Y, office 3” in a DoT from ‘admin’ to ‘Al-
ice’ leaks information about where Alice works and who
gave her permissions. The PDoT encrypts everything ex-
cept the destination entity, which is required for lookup

and indexing. The only public information is “there has
been some kind of delegation to Alice”. We discuss in
§7 which entities can decrypt this information. Addi-
tionally, note that information may leak in other ways.
Some information about who gave permission to whom
(the graph) might leak based on the account that made
the transaction and the destination of the PDoT.

At the syndication tier, each message stream on a re-
source is encrypted (IND-CCA2 level), and can only be
decrypted by the designated router and the entities who
were legitimately given access to the resource. Unlike
authorization, the designated router for a namespace is
assumed to be trusted for the privacy guarantees to hold
in that namespace.

WAVE does not claim to hide anything else, includ-
ing metadata such as size information and timing (e.g.,
including the time when a transaction is made). Hiding
such metadata is known to be a difficult task that often
comes at high performance costs [56, 20].

Providing stronger privacy guarantees in IoT and/or
blockchain-based systems is an important problem, but
out of the scope of this paper.

5 WAVE Smart Contracts

The smart contract primitive [52] provided by
Ethereum [12] is an immutable piece of code, exe-
cuted in the Ethereum Virtual Machine (EVM) [58] by
transactions to change state in the blockchain. Every
node will execute the same stream of transactions, in
the same order, to maintain a globally consistent view
of the blockchain state, which WAVE uses to store the
permission graph. Ethereum uses the notion of gas, a
limited resource that is consumed by transactions as they
execute instructions in the EVM. The maximum gas per
block is decided by miner vote, imposing a global rate
limit on the transactions and state created per block.

The blockchain consensus protocol is attack resistant,
so WAVE inherits this resiliency by storing all global
state in smart contracts. We obtain integrity by introduc-
ing the notion of a WAVE object, a serialized and signed
version of an Entity, DoT, or revocation with associated
metadata used by the four contracts below.

o WAVE object contract. This is a precompiled con-
tract that implements a set of functions used in the other
contracts: deserialize a WAVE object, take a slice from a
WAVE object, compute certain hashes, or verify a signa-
ture in a WAVE object. §8.5 explains the significance of
precompilation.

o Registry contract. The registry contract is used to
store entities, DoTs, and revocations. It invokes func-
tions in the WAVE object contract to check format and
signature validity. Protected DoTs (§7) are opaque and
not inspectable.

Registered DoT objects are indexed by E!¢ as well as



by the hash of the DoT. The index is used by entities to
discover DoTs when proving authorization, discussed
in §6. The contract provides accessor methods allowing
constant time lookup of an entity object by E,,, and a
DoT object by its hash. The registry contract ensures that
an entity object can only be registered once to prevent
malicious modification of metadata such as expiry date.

o Alias contract. The alias contract serves to immutably
bind a sequence of human readable characters to a public
key. Once created they cannot be modified, which per-
mits actions such as granting a DoT to an alias without
fear that the underlying key has been replaced.

o Router affinity contract. This contract maintains
a mapping from namespace entities E!} to designated
router entities £%, and a mapping from designated
routers to service records (SRV) containing the IP ad-
dress and port of the DR, to assist the syndication tier.

Out of band communication between the owner of the
namespace and the owner of the designated router is used
so that the designated router becomes aware of the ex-
istence of the namespace and becomes willing to route
traffic for it. Once this happens, E% creates a Designated
Routing Offer via the router affinity contract stating that
the entity belonging to the designated router is willing to
route traffic for E}.

The owner of the namespace can list all designated
routing offers and, having established trust of a particu-
lar router out of band, can accept the designated routing
offer by calling a function on the contract. After accep-
tance, participants interacting with resources within the
namespace can resolve URIs.

Unlike the registry contract which deals with stor-
ing public objects, the affinity contract deals with ac-
tions. Ethereum guarantees that transactions are valid
and signed by the originating account, but we ensure that
the binding actions are authorized by the respective enti-
ties (the binding from an entity to an Ethereum account
is not known by the contract). To do so, the contract
maintains an incrementing nonce per E,, and the actual
parameters of the contract methods must include the next
nonce value and be signed by the authorizing E,, pre-
venting both spoofing and replay attacks.

6 Authorization Layer

WAVE enforces the authorization policy expressed by the
permission graph without any central trusted party. In-
stead it leverages blockchain smart contracts (in our case,
based on Ethereum).

Create entity. When creating an entity, the agent for that
entity creates a WAVE object containing: { E ,, meta-
data, sig), where E,, is the verification key of this entity,
metadata contains information such as creation time, del-
egated revokers, expiry, comment, and contact, and sig is
a signature using the corresponding E; on the metadata.

The agent stores this object in the registry contract in the
blockchain. The contract checks that the signature veri-
fies and that the entity has not been registered before.

DoT. When creating a DoT , the agent for that entity cre-
ates a WAVE object containing (/" E'?, URI, permis-
sions, metadata, sig), where sig is a signature on the en-
tire object by E{kmm. The agent for E//" stores it in the
registry. The contract checks that the specified entities
are valid and that the signature is correct. The agent does
not check that the granter has permissions to give this
access. The designated router and subscribed agents will
perform such checks when the DoT is used in a proof.

Revoke entity and DoT. Entities and DoTs can be re-
voked by entities in their revocation lists. If entity EVAk
wants to revoke an object (entity/DoT), the agent of en-
tity E4 creates a signed revocation stating that the object
is revoked by E4 and submits it to the registry. The con-
tract checks that £ is indeed in the list of revokers and
that the request signature is valid with E4’s verification
key. If an entity or DoT is expired or revoked, each par-
ticipant in the blockchain will discard the corresponding
entity or DoT from consideration.

7 Protected DoT

While embedding the DoT graph in the blockchain pro-
vides transparency and auditability, in some cases, this
global visibility represents a privacy concern by expos-
ing user information. For example if “admin” delegates
to “Alice” a URI “building name/floor/room number”,
an attacker learns where Alice works. To protect such
information, WAVE provides protected DoTs or PDoTs,
which encrypt information in the DoT.

Recall the content of a DoT from §6. The goal of a
PDoT is mainly to hide the URI from parties inspecting
the blockchain, but it will encrypt other fields too. By
protected fields, we denote the fields of a DoT that are
encrypted in a PDoT. These fields are: E{kmm, URI, Per-
mission, TTL, and metadata including expiry date. We
do not encrypt the E¢ because it is needed for a search
of DoTs as discussed in §5 as well as determining effi-
ciently which key to use to decrypt a PDoT (which is also
important in DoS protection).

We need to encrypt a PDoT in such a way that enti-
ties in the permission graph that need to use that PDoT
in a proof can decrypt it. Concretely, we require a mech-
anism allowing E% to grant a PDoTup to EZ, such that
if EB grants a PDoTpc in the same namespace to Efk,
the existence of PDoTpc allows Efk to decrypt PDoTyp.
All this must hold while satisfying the constraints of our
system: out-of-order delegation and non-interactivity.

We want to limit which entities can decrypt a PDoT.
Given PDoTpc, any entity that receives access from C
via any chain of PDoTs all in the same namespace that
have the same permission as the PDoT (e.g., publish or



subscribe), can decrypt this PDoT. No other entity, in-
cluding those without a chain from C or a chain from C
with different permissions, can decrypt this. We note that
PDoTs can be revoked in a similar fashion to DoTs via a
smart contract that points to the hash of the PDoT. How-
ever, revocation or expiry of a PDoT does not change
who can decrypt that PDoT.

Insufficiency of standard cryptography. Suppose each
entity, has a public and a secret key for use with PDoTs,
say EG has (SKc,PK¢). Consider that whenever EZ
grants a PDoT to an entity Eka, it encrypts the protected
fields with PK¢ so Evc;c can decrypt it.

The problem occurs when DoTs are granted out of or-
der, with EB granting a PDoT to EG before E5 received
a PDoT from E;‘k for that resource. In this case, Evck can-
not decrypt a PDoT for Ef , and, hence it will not have
access to the resource. One possibility is for E5 to give
SKp to ES. However, this means that EG can see all the
PDoTs granted to EZ across all namespaces E5. This is
clearly undesirable: Bob’s assistant should not see dele-
gations in Bob’s home.

To fix this, each party might have a public key per
namespace; in the example above, EB would give a secret
key for the namespace to EG: SK%’. The problem here is
the non-interactivity constraint (§2): an entity does not
know all the namespaces it will receive access to and can-
not create and announce on the relevant public keys. For
example, when Bob joins a new workplace he does not
know all the namespaces in the organization he will gain
access to. The workspace admins would need to inter-
act with Bob, telling him namespaces and obtaining his
public key for each. Finally, the number of smart con-
tracts and information placed on the blockchain for this
task would grow with the product of entities and their
relevant namespaces instead of just entities. To address
this problem, we propose a novel use of identity-based
encryption.

Identity-based encryption (IBE). In IBE [11], a master
has master secret and public keys, (dkm, DKM). One can
encrypt a message for a user with identity name by us-
ing the identity of the user as public key: (DKM, name).
The master can create a secret key for name: idyame <
IBE.Extract(DKM, name), so name can decrypt.

Design for protected DoTs. We apply IBE in a non-
standard way: instead of having a trusted master and
each entity being a user, we have each entity run an in-
stance of IBE of which it is the master, and each entity
has a different identity in each namespace. The “iden-
tity” of the “users” is given by the pair (namespace, per-
mission). Using IBE, anyone can tell what is the public
key of Bob in a namespace even if Bob never received a
DoT in that namespace. Every E, has an IBE master pri-
vate key dkm,; and its corresponding IBE master public

Key DKM,;. The binding of E , to DKM, is made pub-
lic and immutable in the registry contract. A PDoT gets
registered on the blockchain in place of a regular DoT.
Consider a chain of DoTs E4 = E5 = EG =
.., within namespace EJ}, and say we want to pro-
tect the DoT between B and C. Recall from §3.1
that the DoT consists of Gpe = (ES,R), where R =
(EB ,URI,E™, P,meta,sig), E" is the namespace of the
resource, P is the permissions, and sig is the DoT signa-
ture. EVBk runs, at grant-time:

Protect-DoT (Gpc, dkmp, DKM¢):

1. Let ID¢ ns p < (DKMc,ET%, P) be the identity of EG,
for IBE parametrized by P and E;.

2. Let k be a freshly generated symmetric key.

3. Let enck < IBE.Encrypt(IDc ns p, k) be the wrapped
symmetric key.

4. Letidp s p < IBE.Extract(dkmg, EJ¢, P) be the iden-
tity private key of E5 parameterized by P and E};.

5. Let R’ «— {enck,Encrypt(k,(R,idgnsp))) be the
PDoT payload.

6. The PDoT is G- = (ES,R').

Entity ES reveals PDoT G, using its IBE private key

idc,ns,p parameterized by P and EJ%, which it can com-

pute as IBE.Extract(dkmc, D¢ ns p), using:

Reveal-DoT (G, idc s,p):

1. Parse R’ from Gy, into (enck,C).

2. k< IBE.Decrypt(idc ns p,enck) is the symmetric key.
3. R,idp ns p < Decrypt(k,C).

Note that this entity can recursively reveal the DoT
from E4 to EB because the inputs are the PDoT Gf,
which it can retrieve from the blockchain, and the IBE
private key idp 5 p, Which it obtained in step 3 above.
Proof verification: A proof contains the decrypted
PDoTs without the IBE keys, so routers and destination
agents can always verify the proof, even if they could not
otherwise decrypt the PDoTs .

Proof construction: For an entity EG to reveal PDoTs
granted to it, it applies the reveal process above recur-
sively. Each entity has a set of decryption keys available
in its local database either based on its own IBE master
secret key or received from other entities during delega-
tions. To know which key to use to decrypt, this entity
tries these keys starting with those in namespaces that are
more commonly used. An alternative design point is to
not encrypt the namespace and the permission as part of
the PDoT, but only protect the URI and other parameters,
so the entity knows exactly which key to use to decrypt.
However, in the real scenarios we considered, we found
that this did not bring a worthy performance improve-
ment. As a result, PDoTs are traversed in reverse com-
pared to regular proof construction (§8.1), revealing from
EN" to E instead of E to EN™". The direct order
for transparent DoTs ensures that only useful DoTs are



traversed — namely, DoTs that provide delegations from
the namespace authority. Traversing in reverse means
that EG,does not know if a DoT chain is useful until it
reaches the namespace authority.

However, if an agent follows this process of revealing
every time it needs to show a proof, a DoS attacker might
gain an advantage. While each DoT costs the attacker,
the attacker has an amplification power because it can
arrange a small number of DoTs in a way that creates
many distinct paths.

To mitigate this, agents maintain a local cache
database of revealed protected DoTs, containing every
DoT granted on namespaces of interest, without filtering
by usefulness. Proofs are now built as normal from E}
to E/'”"" because the DoTs are decrypted locally. While
this forces agents to store DoTs created by potentially
unauthorized parties, this only happens once per PDoT;
recall that the attacker must expend funds to create any
new PDoT.

8 Overlay Layer

The overlay layer is composed of agents and routers
interacting via syndication connections and via a
blockchain client and its peering connections. Figure 3
gives an overview of the software components constitut-
ing a router, with additional agent components in dashed
boxes.

8.1 Proof and Verification

Agents and routers work with a representation of per-
missions called a DoT chain: a proof that an entity
EP" can interact with a resource URI or URI pattern
on a namespace E/}. It manifests as a path through the
DoT graph leading from E% to E/”"". The permissions
granted by the chain are the intersection of those granted
by its DoTs ; expiry or revocation of any entity or DoT
in the chain invalidates the whole.

A DoT chain is serialized as a list of DoT hashes. To
verify the chain a router/agent first elaborates the chain
by resolving each hash into the full DoT object and ver-
ifying it. It then verifies that every DoT’s “from” is the
“to” of the previous, the intersection of the permissions
is a superset of those claimed by the proof, and the TTL
imposed by the DoTs in the chain is not exceeded by the
length of the chain.

A message encapsulates an action on a resource by
combining a URI, the action, a DoT hash chain termi-
nating at E3¢"" proving the action is permitted on the
URI, and a signature by ES"4¢". A message is verified by
checking the signature and then verifying the proof.

8.2 Router Design

The structure of the router and its agent extension is illus-
trated in Figure 3. At the base, the blockchain interface
layer is a modified Ethereum Go client (a variant of Geth

Message Dispatch
Proof Verification

Session Management

Cache —“

Precompiled WAVE Smart Contracts
Blockchain Interface (Modified Geth)
Figure 3: WAVE router/agent software design

Cache Evictor

1.5.9 [29]), complete with its active blockchain peers and
blockchain state database. Above this lies an API for
smart contracts. To overcome the high cost of EVM ex-
ecution to extract WAVE objects from local blockchain
state, a caching layer accelerates object resolution. To
ensure the consistency of this cache, a cache evictor ties
in to the Ethereum event log and evicts objects from the
cache in response to transactions on the blockchain that
might affect their validity.

Utilizing this, the proof verification module, given a
sequence of DoT hashes, performs object resolution and
verification to validate proofs.

The message dispatch module receives and inspects
messages published to resources, passing the proof
through the verification module. Invalid proofs may war-
rant disconnecting the remote agent and/or blacklisting
the associated entities, depending on the DDOS protec-
tion policy. Messages marked as persistent are main-
tained in a database for asynchronous retrieval. All valid
messages are matched against a resource tree formed by
active subscription patterns and are inserted into match-
ing subscription message queues.

When a remote session between a router and an agent
begins, TLS with self-signed certificates is used. To
avoid man-in-the-middle and masquerading attacks, the
handshake concludes with both sides exchanging a sig-
nature of the TLS certificate, made with their respec-
tive E;. This allows security without using TLS certifi-
cate authority infrastructure, a centralized point of weak-
ness [23, 30, 31].

8.3 Agent Design
The agent software shares blockchain and WAVE object
caching with the router software. It differs in its connec-
tion to a device or service that it represents. Upon estab-
lishing a secure connection (hardwired in WAVE-native
devices) with the agent, the device bestows its E, into
the care of the agent, so that computationally intensive
crypto operations can be done in the agent. IoT service
logic can be implemented in any language, without the
concern of having performant crypto libraries available.
The agent contains proof generation logic. If an agent
is aware of how it has obtained permission to perform an
action, it can simply concatenate DoT hashes to form the
proof. To discover a proof, the agent performs a breadth



first search of the permission graph searching for a path
from E!} (obtained from the URI) to E ,, filtering edges
by the required permissions.

8.4 DDoS Protection

Routers may employ DDoS mitigation strategies, e.g.
blacklisting entities that attempt too many unauthorized
actions. As registering entities requires blockchain inter-
action, the rate at which the attacker can create new en-
tities is severely limited, rendering an attack at this layer
ineffective. See §9.1.

An attacker might attempt lower-level attacks, such as
a layer 3 bandwidth DDoS. To mitigate this, we inspect
the TLS handshake. Traffic categorization between valid
and malicious is used to configure upstream routers to
nullroute the origin IP blocks. In WAVE any session can
be easily categorized as malevolent with no false posi-
tives by inspecting the first 96 bytes of the stream (con-
taining the E55"" and a signature of the TLS certificate)
and comparing against the permission graph.

8.5 Precompiled Contract

While formally all four contracts could be implemented
in pure Solidity [25] on the EVM, the overhead of the
WAVE object contract would be excessive. Ethereum de-
signers anticipated this and allow contracts to be precom-
piled i.e. translated into native code and bundled with
the client. From the perspective of transactions and other
contracts, it is a standard contract, but it consumes less
CPU time and gas to execute. WAVE object verification
includes signature verification on Ed25519, an elliptic
curve not supported natively by the EVM.!

A further optimization is the persistence of state be-
tween invocations of the WAVE object contract methods.
Rather than using global variables in a contract, incur-
ring state changes in the blockchain after the end of the
transaction, the WAVE precompiled contract contains a
“scratch space” which allows temporary global variables
for the duration of the transaction, without state in the
blockchain. After an entity object has been inspected by
the contract, future function calls can use the constant-
size E,, to refer to it, and the precompiled contract can
internally elaborate it.

9 Evaluation

The overall effectiveness of WAVE has been validated
through deployments at scales of hundreds of devices
and thousands of resources over a period of more than
500 days. Here, we provide a systematic evaluation of
the use of blockchain smart contracts as a basis for fully
distributed consensus for storage, authentication, autho-

'In an upcoming update of Ethereum, it seems likely that Ed25519
signature verification will be supported. With this addition, we can
implement WAVE object inspection in Solidity with acceptable perfor-
mance, allowing WAVE to run on the main Ethereum chain.

Operation Gas used | Approx USD
Register entity 185k 1.64

Register DoT 279k 247

Create specific alias | 66k 0.58 + fee
Create any alias 69k 0.61

Offer routing 83k 0.79

Accept routing 53k 0.47

Revoke entity 51k 0.45 - bounty
Revoke DoT 60k 0.53 - bounty

Table 1: Gas cost of some WAVE contract operations.

l Primitive [ Server | Atom [ R. Pi ‘
Msg sig. gen. (2KB) | 30 937 961
Msg sig. ver. 2KB) | 75 1815 1524
PDoT enc 4422 290500 | 429976
PDoT dec w/ id; 55 p | 1503 126346 | 184518
PDoT dec w/ AES k | 76 1649 1313

Table 2: The operation time (in microseconds) of WAVE crypto
primitives

rization, and DoS prevention. We begin with an evalua-
tion of the lowest primitives and DDoS protection, then
examine the cost for agents participating in the WAVE
chain under various scenarios, and conclude with results
from an emulated city-scale blockchain deployment.

To our knowledge, this is the most comprehensive
and realistic evaluation of blockchain technology yet.
Previous work has explored the overhead of analyzing
contracts for security flaws [39] and the suitability of
blockchains for data storage through short-term and rel-
atively small-scale experiments [21]. We provide a lon-
gitudinal study of a practical blockchain application in-
volving over 100 clients under real-world conditions.

9.1 Microbenchmarks

We begin with the evaluation of interactions with the
blockchain and the suite of crypto primitives.

Contract interactions An agent must expend gas to reg-
ister an object. The price of gas is a miner-voted value
that generally increases with load. This feedback mech-
anism prevents a single party from saturating the band-
width of the blockchain. Table 1 shows the gas cost of
WAVE contract interactions with the approximate USD
cost.> When a WAVE object is registered, any ether trans-
ferred with it becomes a “revocation bounty” that is re-
turned when the object is revoked.

Signatures - Table 2 shows the time spent verifying and
signing messages on a range of platforms. Even con-
strained embedded systems can process thousands of sig-
natures per second, well above the typical traffic of IoT
networks.

Dispatch - The cost of transmitting and dispatching mes-

2 At the time of writing the exchange is 385 USD/ETH and 23 gwei/-
gas



Percentile | Normal [ms] | Attack [ms]
99.9% 77.6 74.9

99% 10.4 10.7

95% 4.0 39

Mean 3.50 3.55

Table 3: End-to-end legitimate traffic latency under normal and
attack conditions

sages in WAVE is similar to existing systems, such as
MQTT, and is decoupled from the use of a blockchain
for authentication. See [54, 59] for a quantification of
these costs.

Proof - Building a proof requires a breadth-first search
of the permission graph. As an extreme example, the
Utility namespace for the meters in Table 7 governs the
permissions for 360,712 meters, and contains a total of
363,636 DoTs. The meter searches these DoTs to gener-
ate a proof, finding one that traverses 3 DoTs and taking
1.4 ms in total. The proof is cached, so subsequent proof
lookups complete in microseconds.

Protected DoTs The cost of the IBE primitives required
for PDoTs is substantially higher than those for DoTs , as
shown in the bottom half of Table 2, for the implementa-
tion from [37]. Note that these costs are paid only once
for each DoT granted to an entity, and the revealed DoT
is persisted for future use.

DDoS Protection To empirically confirm the effective-
ness of an entity-blacklist DDoS policy at the router, we
measure the impact on legitimate traffic when the desig-
nated router is under an attack comprising 130 new con-
nections per second, each with a unique entity attempting
unauthorized actions. To sustain an attack of this magni-
tude, an attacker needs to spend approximately 360 mil-
lion gas per block registering new entities. This is two or-
ders of magnitude larger than the gas limit of Ethereum’s
main chain and serves as a generous upper bound.

The legitimate traffic is a synthetic stream of roughly
1600 messages per second. We observe 10 minutes of
traffic under normal conditions and 10 minutes under at-
tack conditions (described below). The end-to-end mes-
sage latency is broken down in Table 3, where we ob-
serve no detrimental effect on legitimate traffic. More-
over, the blockchain imposes a rate limit on identity cre-
ation, effectively rendering this attack vector irrelevant.
This makes WAVE resistant to general Sybil attacks, a re-
sult that has not been achieved in any previous distributed
authorization system.

9.2 Blockchain Characterization

A primary concern in using a blockchain is the cost of
an agent participating in the chain. We perform a large
scale test on over 100 WAVE nodes and emulate different
levels of load on the blockchain to observe the impact on
CPU, memory, and network bandwidth consumption of
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Net class [speed Mbps/latency ms]
100/3 | 17.2/5 | 2/30 1/100
Role A B C D
Miner - 20 peers 10
Agent - 20 peers 12 11 11 11
Agent - 2 peers 12 11 11 11

Table 4: Breakdown of AMD64 cloud nodes in testbed.

these nodes. We monitor the current “age” of the chain
on each node. This is a measure of consistency specific
to blockchain-based systems and the primary metric of
fitness for purpose. If an agent cannot keep up with chain
updates, it must drop messages or elevate its trust in the
router, as it is potentially unaware of recent revocations.

During multiple experiments, we collected over
16,600 timeseries data streams, each with 10s resolution,
that together contain 1.49 billion data points and cover a
time period of nearly one month.

Experimental Setup We run WAVE on three different
platforms. Docker containers are used to encapsulate 100
nodes, consisting of both miners and agents, on Ama-
zon EC2. Seven m4.16xlarge instances feature In-
tel Xeon CPUs and SSD-backed storage that guarantee a
baseline performance of about 1000 IOPS. We randomly
distribute the containers among these hosts such that
each host has at least 4 CPU cores and 8 GB of memory
per container. netem shapes each container’s network
latency and bandwidth. A container is assigned to one of
four networking classes based on a profile of wired Inter-
net connections in North America [7]. The breakdown of
nodes among these different constraint classes is given
in Table 4. In addition to the AMD64 cloud nodes, three
agents are run on Raspberry Pis with quad-core armv71
CPUs and 1 GB of RAM and three agents are run on 1386
machines with Intel Atom CPUs and 2 GB of RAM.

We study the performance of the WAVE agents and

miners during four phases of operation.

1. Fast Sync [53] occurs when a new node is brought
online. =~ The node must synchronize with the
blockchain to reach a consensus on WAVE’s current
state.

2. Idle is a period of minimal blockchain activity. Al-
though blocks contain no transactions, new blocks
are mined. Agents must process these new blocks
to remain synchronized with the chain.

3. Attack is a period of intense activity, effectively at
the level of a concerted attack on the chain by a
party with infinite funds. This is compounded by
WAVE’s blocks becoming temporarily enlarged, ac-
commodating more than 130 registrations, meaning
each block consumes 25M gas, an order of mag-
nitude more than the gas limit of Ethereum’s main
chain (roughly 4M).



Table 5: CPU utilization as [number of cores] for blockchain
participation. The first column indicates the role (Agent or
Miner), quantity, and peer count and architecture for each node

type.

4. Normal is a period of typical city-scale load on the
blockchain. The generation of this load is described
in Section 9.3.

Table 5 summarizes the CPU measurements collected
for all platforms. No WAVE node was CPU-bound at
any point. Miners use multiple CPU cores regardless of
the load on the chain, as expected. CPU consumption
for regular agents was higher when the blockchain was
under attack, but never exceeded ~': a core.

WAVE agents and miners opportunistically take advan-
tage of extra memory available to them for caching, but
do not require this to function. We observe no issues
on machines with at least 2 GB of memory. With Rasp-
berry Pi’s 1 GB of memory, we observed several out-
of-memory conditions on their WAVE agents when the
blockchain load was at unrealistically high attack lev-
els. The Raspberry Pi agents had sufficient memory to
participate whenever the chain was idle or under normal
city-scale load.

The bandwidth differences across Internet speeds are
not statistically significant when the agent is caught up
on the chain. UDP bandwidth used for peer discovery is
not significant compared to the bandwidth used for trans-
ferring state and is omitted. Table 6 shows the average
bandwidth used by agents at different levels of chain ac-
tivity. The bandwidth used to participate in the chain is
reasonable even during periods of excessive load.

That bandwidth is impacted by the number of peers
is likely indicative of an implementation flaw in the
Ethereum golang client, as having more peers should not
cause a participant to download significantly more data.
All additional downstream traffic at attack load in the 20-
peer case is redundant, so at least 100KiB/s of 114KiB/s
is data that need not be fetched from peers. Neverthe-
less, participation in a chain that is under a DoS attack
only requires a modest amount of bandwidth.

Chain age is the number of blocks separating the head
of the blockchain from the latest block known to a node.
Nodes stay up to date on the chain during idle and normal
period, independent of peer count and available network

Type Idle Normal Attack Type 1 Attack Idle Normal
(1h) (30h) (4h) (1h) (30h) (4h)
M,10,20,x64 | 3.80+0.72 | 3.96+0.26 | 4.84+0.75 M.10.20 in 103+6 2.74+1.10 | 2.19+0.15
A,45,20,x64 | 0.04+0.01 | 0.03+0.01 | 0.594+0.30 T out 139+17 | 5.66+17.7 | 2.53+0.46
A,45,2,x64 0.05+0.01 | 0.034+0.01 | 0.48+0.32 A45.20 in 114412 | 2.89+0.52 | 2.69+0.93
A,1,20,armv7 | 0.46+0.08 1.3940.10 T out 140+22 | 2.93+1.33 | 11.85+35.2
A2,2,armv7 | 0.15+0.01 1.58+0.11 A45.2 in 154+1.9 | 0.85+0.36 | 0.54+0.16
A,1,20,atom 1.224+0.14 1.37+0.09 T out | 9.7+2.1 0.79+1.14 1.2442.52
A,1,2,atom 0.4740.06 0.611+0.10
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Table 6: Bandwidth [KiB/s] for blockchain participation. The
first column indicates the role (Agent or Miner), quantity, and
peer count for each node type.

Gas Consumption
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Figure 4: Number of blocks behind the head of the chain over
time (x) for each node. The y axis breaks nodes down by role:
miner (m), agent with a full set of 20 peers (f), and agent re-
stricted to two peers (r) as well as by the net classes defined in
Table 4.

bandwidth. We never observe a node falling behind by
more than nine blocks, equivalent to maximum staleness
of about two minutes.

Figure 4 shows the age of the chain for each of the 100
EC2-based WAVE nodes across our emulated attack. All
nodes are up to the head of the chain until activity dra-
matically increases at 04:30 UTC, when most nodes fall
one or two blocks behind, but quickly recover. A handful
fall more behind and require about 30 minutes to recover.
Upon further investigation, these nodes were found to be
running on the same EC2 host, and we concluded that
the instance was suffering from disk IOPS saturation.’
45 minutes into the attack, however, nearly all agents are
again caught up to the head of the blockchain.

9.3 City-Scale Simulation

To evaluate the costs of running and participating in
a blockchain-based system at real scale, we emulate a
deployment of WAVE as the communication fabric for

3We plan to address this by provisioning more capable storage be-
fore running a new round of experiments that includes measurement of
IOPS for the final version of the paper.



Type Entities DoTs granted | Avg Out®
Occupant | 951,293 1,312,005 1.38
Apt Owner | 15,787 529,562 33.54
Apt Bldg 40,921 40,921 1
Apt Lease | 264,781 264,781 1
House Title | 95,931 95,931 1
Thermostat | 360,712 N/A N/A
Meter 360,712 N/A N/A
Utility 603 722,026 1197.39
Total 2,090,740 | 2,965,226 1.42

Table 7: Breakdown of types of entities participating in the
city-scale emulation: the number of DoTs granted by entities
of that type, and the average out-degree for an entity calculated
as a ratio of the two counts.

smart, city-wide energy management services. The full
details of the city-scale emulation are given in [1]: we
summarize the scale of this emulation in Table 7. En-
tities represent people (e.g. homeowners), devices, and
institutions (e.g. the electric utility). DoTs are granted
to give building occupants the ability to actuate local
thermostats, to allow the electric utility to monitor en-
ergy consumption, etc. Only control operations, such
as DoT grants, require a transaction on the blockchain.
Data traffic, such as meter readings, does not involve the
blockchain and scales arbitrarily.

To estimate the expected load on the blockchain at
this scale, we construct a statistical model of property
turnover for the set of apartments, houses and occupants
in San Francisco using publicly available land-use and
tenancy data [17, 55]. For each day, the statistical model
determines which properties in San Francisco experience
turnover, generates the corresponding set of blockchain
transactions, and then distributes these transactions over
work hours. Each turnover event corresponds to a set of
grants and revocations of DoTs and entities.

All WAVE objects were registered before the steady-
state emulation. Proof construction for interacting with
devices requires ~ 1ms for a thermostat on a home/apart-
ment namespace and ~2ms for a meter on the utility
namespace. Both assume a cold cache, so they are es-
sentially a one-time cost. The proofs are cached in their
entirety, so subsequent resolutions complete in a few mi-
croseconds. The transaction load created by this emula-
tion remains below 150 transactions per hour (0.6 trans-
actions per block), suggesting that even at city-scale the
underlying blockchain will remain nearly idle.

10 Related Work

WAVE can be contrasted against prior frameworks for au-
thentication and authorization along the dimensions of
trust, privacy and protection.
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10.1 Centralized Trust

Existing authentication and authorization systems ex-
ist in both single-authority (LDAP [61], Kerberos [40],
X.509 PKI [10]) and federated (XMPP [45], Jabber [44],
OAuth [33], EventGuard [51]) contexts. These rely
upon a trusted, online provider to perform authentica-
tion, authentication and revocation services. This is
the case for many platforms offering communication in
the IoT space (both pub-sub syndication and point-to-
point) [6, 46, 34, 51, 38, 4, 51]. WAVE can operate at
large scale over untrusted infrastructure and across mul-
tiple administrative domains without the need for a third-
party authenticating service.

10.2 Decentralized Trust

Several systems avoid a central authority for establishing
and confirming trust relationships, authentication and au-
thorization. We distinguish these systems by whether or
not they depend upon trusted infrastructure.

CCN [35] and the Web of Trust [14, 13] implement a
decentralized peer-to-peer trust model in which a princi-
pal, identified by a public key, can publish a signature of
another public key to indicate a notion of trust. Chains of
these signatures express delegation of trust, and are sim-
ilar to DoT chains in WAVE, but cannot express what has
been entrusted along the chain.

Trust management systems, such as PolicyMaker [9],
KeyNote [8] and SPKI/SDSI [43, 24], provide more
structured means of expressing trust. They combine
structured policy definitions with public key identities
which can be used to implement patterns such as RBAC
and groups along with expiration and revocation policies.
Trust relationships are established in a peer-to-peer man-
ner and leverage signatures to verify the exchanged iden-
tities and policies.

While the definitions of trust and identity are fully in-
dependent from any central authority, these systems can-
not establish a consistent and persistent view of the cur-
rent set and status of those definitions. For example, a
Web of Trust keyserver cannot prove the nonexistence of
a revocation or guarantee that a key will be stored for-
ever. WAVE resolves this by using the blockchain as a
global ledger for all registered entities, DoTs and revoca-
tions, guaranteeing that all participants know the current
state of all permissions (or know that they do not know).

Several recent authentication systems [2, 32, 50] lever-
age a blockchain to provide consistent storage for decen-
tralized identity management services, but do not support
out-of-order and non-interactive delegation and revoca-
tion as WAVE does. WAVE provides even stronger guar-
antees: the PDoT protocol makes private the declaration
of what is trusted to all but the trusted parties, while still
maintaining the property that these declarations can be
made of out-of-order and non-interactively.



11 Conclusion

We described WAVE, a decentralized authorization sys-
tem without the use of a central trusted party. WAVE
leverages blockchain smart contracts combined with pro-
tected DoT's to maintain the secrecy of the resources del-
egated on the public blockchain. This approach provides
a powerful means of federating networks of embedded
networks and supporting the life cycles of devices, ser-
vices, smart environments, infrastructures, and individu-
als. Our evaluation shows that WAVE is efficient enough
to support a city-scale federation.
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